Three Examples. Solve differential equations without a book. Three basic examples used throughout a course in differential equations, which require only a calculus background.

Growth-Decay: \[
\frac{dA(t)}{dt} = k A(t), \quad A(0) = A_0.
\]
The unique solution is \(A(t) = A_0 e^{kt} \). Radioactive decay. Jeweler’s bench light experiment. Malthusian population dynamics. RC and LR circuits. Drug elimination. First-order chemical reactions, law of mass-action. Compound continuous bank interest.

Newton Cooling: \[
\frac{du(t)}{dt} = -h(u(t) - u_1), \quad u(0) = u_0.
\]
The solution is \(u(t) = u_1 + (u_0 - u_1) e^{-ht} \). Hot chocolate at initial temperature \(u_0 \) with room thermometer reading \(u_1 \). Symbol \(u(t) \) = time-varying hot chocolate dial thermometer temperature.

Verhulst Dynamics: \[
\frac{dP(t)}{dt} = (a - b P(t)) P(t), \quad P(0) = P_0.
\]
The solution is \(P(t) = \frac{a P_0}{b P_0 + (a - b P_0) e^{-at}} \). Fish population \(P(t) \) in Cecret Lake at Alta. Carrying capacity. Stocking and re-stocking. Harvesting.

Example 1: Exercise 1.2-2: Solve \(dy/dx = (x - 2)^2 \), \(y(2) = 1 \).
Method of quadrature. Answer Check details. Non-reversible steps, false proof for \(0 = 1 \).

Example 2: Exercise 1.2-4: \(dy/dx = 1/x^2 \), \(y(1) = 5 \).
Power rule in Newton calculus. Answer check shortcuts.

Example 3: Exercise 1.2-10: \(dy/dx = x e^{-x} \), \(y(0) = 1 \).
Integral tables and integration by parts. Jennifer Lahti’s solution:
http://www.math.utah.edu/~gustafso/s2016/2280/2250Week1exercises-JenniferLahti-1.2.5+8+10.pdf

Example 4: Exercise 1.3-8: \(dy/dx = x^2 - y \)
Thread edge-to-edge solutions through the direction field at each blue dot. JPEG image source:

Example 5: Exercise 1.3-14: \(dy/dx = y^{1/3} \), \(y(0) = 0 \)
Explain application of the Peano and Picard theorems.
Computer numerical methods fail on this example. Why?

Example 6: Exercise 1.4-6: Solve \(y' = 3\sqrt{xy} \)
Three answers. Book reports only one answer.

Example 7: Exercise 1.4-10: Solve \((1 + x^2)y' = (1 + y)^2 \)
Two answers. Book reports only one answer.

Example 8: Exercise 1.4-18: Solve \(x^2y' = 1 - x^2 + y^2 - x^2y^2 \) [See Example 11 infra]

Example 9: Exercise 1.4-22: Solve \(y' = 4x^3y - y, \quad y(1) = -3 \)

Example 10: Show that \(y' = x + y \) is not separable.
TEST I. \(f_x/f \) depends on \(y \) implies \(y' = f(x,y) \) not separable.

Example 11: Find a factorization \(f(x, y) = F(x)G(y) \) given
1. \(f(x, y) = 2xy + 4y + 3x + 6 \)
2. \(f(x, y) = (1 - x^2 + y^2 - x^2y^2)/x^2 \)
Answers: (1) \(F = x + 2, \quad G = 2y + 3 \); (2) \(F = (1 - x^2)/x^2, \quad G = 1 + y^2 \). Main idea: Choose \(y = 0 \) in \(F(x) = f(x, y)/G(y) \) to find \(F(x) = (3x + 6)/(G(0)) \) in equation (1). How to find \(G \)? **Warning:** Divide by zero is not allowed. Choose \(y = 0, \quad y = 1 \), etc, until no divide by zero error.

Example 12: Midterm 1 examples: \(y' = x + y, \quad y' = x + y^2, \quad y' = x^2 + y^2 \)