Geometry of linear transformations

< 'S 2 ) Scaling Sub-classes Dilation (k > 1) and Contraction (0 < k < 1).
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1 Vertical Shear Change vertical y — y + kz, leave z fixed.
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’; ) Horizontal Shear Change horizontal x — = + ky, leave y fixed.



Properties of Geometric Transformations

e The columns of a projection matrix are scalar multiples of a single unit vector u, there-
fore the columns are either the zero vector or else a vector parallel to u.

e The columns of a reflection matrix are unit vectors that are pairwise orthogonal, that is,
their pairwise dot products are zero.

e A shear can be classified as horizontal or vertical by its effect in mapping columns of
the identity matrix. A horizontal shear leaves the first column of the identity matrix
fixed, whereas a vertical shear leaves the second column of the identity matrix fixed.



