Differential Equations 2280

Sample Midterm Exam 3 with Solutions
Exam Date: Friday 22 April 2016 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is
expected. Details count 3/4, answers count 1/4. Problems below cover the possibilities, but the exam day
content will be much less, as was the case for Exams 1, 2.

Chapter 3

1. (Linear Constant Equations of Order n)

(a) Find by variation of parameters a particular solution y, for the equation y” = 1 —z. Show all steps
in variation of parameters. Check the answer by quadrature.

(b) A particular solution of the equation ma” 4 ca’ + kx = Fy cos(2t) happens to be z(t) = 11 cos 2t +
e tsiny/11t — y/11sin2t. Assume m,c, k all positive. Find the unique periodic steady-state solution

ISssS-
(c) A fourth order linear homogeneous differential equation with constant coefficients has two particular
solutions 2e3% 4+ 4x and xze3®. Write a formula for the general solution.

(d) Find the Beats solution for the forced undamped spring-mass problem
2" + 64z = 40cos(4t), x(0) = 2'(0) = 0.
It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save

time, don’t convert to phase-amplitude form.

(e) Write the solution z(t) of

2" (t) + 252 (t) = 180sin(4t), x(0) = 2/(0) = 0,
as the sum of two harmonic oscillations of different natural frequencies.
To save time, don’t convert to phase-amplitude form.

(f) Find the steady-state periodic solution for the forced spring-mass system z” + 2z’ + 2z = 5sin(t).

(g) Given 52"(t) + 22'(t) + 4x(t) = 0, which represents a damped spring-mass system with m = 5,
c =2, k =4, determine if the equation is over-damped , critically damped or under-damped.
To save time, do not solve for z(t)!

(h) Determine the practical resonance frequency w for the electric current equation
21" +7I' + 501 = 100w cos(wt).

(i) Given the forced spring-mass system z” + 22’ + 17z = 82sin(5t), find the steady-state periodic
solution.

(j) Let f(z) = 23e!?® + 22e~sin(x). Find the characteristic polynomial of a constant-coefficient linear
homogeneous differential equation of least order which has f(x) as a solution. To save time, do not
expand the polynomial and do not find the differential equation.



Answers and Solution Details:

2 23

Part (a) Answer: y, = R

Variation of Parameters.
Solve 3" = 0 to get yp, = c1y1 + c2y2, y1 = 1, y2 = x. Compute the Wronskian W = y1y} — yjya = 1.
Then for f(t) =1 —x,

—f f
Yp = Y1 yszx +y2 | Y1 de,

=1 [ o= 2z +a [101 - 2)ds,

yp = —1(2%/2 — 2 3) + a(x — 2 /2),
yp = 2%/2 — 23 /6.
This answer is checked by quadrature, applied twice to ¥ = 1 — x with initial conditions zero.

Part (b) It has to be the terms left over after striking out the transient terms, those terms with limit
zero at infinity. Then xss(t) = 11 cos 2t — +/11sin 2t.

Part (c) In order for ze3" to be a solution, the general solution must have Euler atoms €37, ze3%. Then
the first solution 2e3* 4 4z minus 2 times the Euler atom €3 must be a solution, therefore x is a solution,
resulting in Euler atoms 1,z. The general solution is then a linear combination of the four Euler atoms:
y=c1(1) + co(z) + c3 (€3%) + ¢4 (we3®).

Part (d) Use undetermined coefficients trial solution = dj cos4t + dysin4t. Then d; = 5/6, d2 =0,
and finally z,,(¢t) = (5/6) cos(4t). The characteristic equation 72 4+ 64 = 0 has roots £8i with correspond-
ing Euler solution atoms cos(8t),sin(8¢). Then xp(t) = c1 cos(8t) + cosin(8t). The general solution is
z = xp, + 2. Now use z(0) = 2/(0) = 0 to determine ¢; = —5/6,co = 0, which implies the particular
solution z(t) = —2 cos(8t) + 2 cos(4t).

Part (e) The answer is z(t) = —16sin(5t) + 20sin(4¢) by the method of undetermined coefficients.
Rule I: z = dy cos(4t) + da sin(4t). Rule 1l does not apply due to natural frequency v/25 = 5 not equal to the
frequency of the trial solution (no conflict). Substitute the trial solution into x”(t) 4+ 25x(¢) = 180 sin(4t)
to get 9d; cos(4t) + 9dysin(4t) = 180sin(4¢). Match coefficients, to arrive at the equations 9d; = 0,
9dy = 180. Then d; =0, d2 = 20 and z,(t) = 20sin(4¢). Lastly, add the homogeneous solution to obtain
x(t) = zp, + xp = c1 cos(5t) + casin(5t) + 20sin(4t). Use the initial condition relations x(0) = 0,2'(0) =0
to obtain the equations cos(0)c; + sin(0)ca 4+ 20sin(0) = 0, —5sin(0)cy + 5 cos(0)ce + 80 cos(0) = 0. Solve
for the coefficients ¢; =0, ¢ = —16

Part (f) The answer is z = sint — 2cost by the method of undetermined coefficients.

Rule I: the trial solution z(¢) is a linear combination of the Euler atoms found in f(x) = 5sin(¢). Then
x(t) = dj cos(t) + dg sin(t). Rule Il does not apply, because solutions of the homogeneous problem contain
negative exponential factors (no conflict). Substitute the trial solution into z” + 22’ + 22 = 5sin(t) to
get (—2dy + da)sin(t) + (di + 2dz) cos(t) = 5sin(t). Match coefficients to find the system of equations
(—=2dy + d2) =5, (d1 + 2d2) = 0. Solve for the coefficients d; = —2, dy = 1.

Part (g) Use the quadratic formula to decide. The number under the radical sign in the formula, called
the discriminant, is b* — 4ac = 22 — 4(5)(4) = (19)(—4), therefore there are two complex conjugate roots

and the equation is under-damped. Alternatively, factor 51 + 2r + 4 to obtain roots (—1 =4 +/197)/5 and
then classify as under-damped.

Part (h) The resonant frequency is w = 1/v' LC = 1/1/2/50 = v/25 = 5. The solution uses the theory
in the textbook, section 3.7, which says that electrical resonance occurs for w = 1/v/LC.



Part (i) The answer is x(t) = —5cos(5t) — 4sin(5t) by undetermined coefficients.

Rule I: The trial solution is x,(t) = Acos(5t) + Bsin(5t). Rule II: because the homogeneous solution
xp(t) has limit zero at ¢ = oo, then Rule Il does not apply (no conflict). Substitute the trial solution
into the differential equation. Then —8A cos(5t) — 8B sin(5t) — 10Asin(5t) + 10B cos(5t) = 82sin(5t).
Matching coefficients of sine and cosine gives the equations —8A + 10B = 0, —10A — 8B = 82. Solving,
A= —5,B = —4. Then z,(t) = —5cos(5t) — 4sin(5t) is the unique periodic steady-state solution.

Part (j) The characteristic polynomial is the expansion (r — 1.2)*((r + 1)2 4+ 1)3. Because x%e%* is an
Euler solution atom for the differential equation if and only if €%, ze®, 22e%* 13 are Euler solution atoms,
then the characteristic equation must have roots 1.2,1.2,1.2, 1.2, listing according to multiplicity. Similarly,
x?e~sin(z) is an Euler solution atom for the differential equation if and only if —14i, —144, —14 are roots
of the characteristic equation. There is a total of 10 roots with product of the factors (r — 1)*((r 4+ 1)%2 +1)3
equal to the 10th degree characteristic polynomial.

Use this page to start your solution.
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Chapters 4 and 5

2. (Systems of Differential Equations)
Background. Let A be areal 3 x 3 matrix with eigenpairs (A1, v1), (A2, v2), (A3, v3). The eigenanalysis
method says that the 3 x 3 system x’ = Ax has general solution

x(t) = c1vieMt + covae?t + caviaest.
Background. Let A be an n x n real matrix. The method called Cayley-Hamilton-Ziebur is
based upon the result

The components of solution x of x'(¢t) = Ax(t) are linear combinations of Euler solution atoms
obtained from the roots of the characteristic equation |[A — AI| = 0.

Background. Let A be an n x n real matrix. An augmented matrix ®(¢) of n independent solutions of
x/(t) = Ax(t) is called a fundamental matrix. It is known that the general solution is x(t) = ®(t)c,

where c is a column vector of arbitrary constants ¢y, ..., ¢,. An alternate and widely used definition of
fundamental matrix is ®'(t) = A®(t), |P(0)| # 0.

(a) Display eigenanalysis details for the 3 x 3 matrix

4 11
A=|1 4 1|,
0 0 4
then display the general solution x(t) of x'(t) = Ax(t).
(b) The 3 x 3 triangular matrix
311
A=|o0 4 1|,
0 05

represents a linear cascade, such as found in brine tank models. Using the linear integrating factor
method, starting with component x3(t), find the vector general solution x(¢) of x'(t) = Ax(t).

(c) The exponential matrix e4? is defined to be a fundamental matrix ¥(t) selected such that ¥(0) = I,
the n x n identity matrix. Justify the formula e4* = ®(¢)®(0)~!, valid for any fundamental matrix ®(t).

(d) Let A denote a 2 x 2 matrix. Assume x’(t) = Ax(t) has scalar general solution z; = cje + coe?,

1y = (c1 — ca)et + 2¢1 + 2)e?t, where ¢, ¢y are arbitrary constants. Find a fundamental matrix ®(t)
and then go on to find e4* from the formula in part (c) above.

(e) Let A denote a 2 x 2 matrix and consider the system x'(t) = Ax(t). Assume fundamental matrix
2t

t
O(t) = < 2; —Z2t ) Find the 2 x 2 matrix A.

(f) The Cayley-Hamilton-Ziebur shortcut applies especially to the system

¥=3z+y, Yy =-x+3y,
which has complex eigenvalues A\ = 3 £+ 4. Show the details of the method, then go on to report a
fundamental matrix ®(t).
Remark. The vector general solution is x(t) = ®(¢)c, which contains no complex numbers. Reference:
4.1, Examples 6,7,8.



Answers and Solution Details:

Part (a) The details should solve the equation |A — AI| = 0 for the three eigenvalues A\ = 5,4,3.
Then solve the three systems (A — \I)v' = 0 for eigenvector ¥/, for A = 5,4, 3.
The eigenpairs are

1 -1 1
5 1 1; 4, -1 |; 3,1 —1
0 1 0
The eigenanalysis method implies
1 -1 1
x(t) = e | 1 | +ee™| =1 | 43| -1
0 1 0

¥ = 3r+y+z,
o= dy+z
2 = bz

Solve the last equation as
____constant — et
integrating factor — 3% -

The second equation is
y =4y + czet
The linear integrating factor method applies.

z =

Y — Ay = cge™™
W !/
("y) = c3e”, where W = %,
(Wy) = c3Wedt
(€f4ty)/ — 03674156525
e_4ty = 03et + co.

’y — cqeP 4 6264t‘

Stuff these two expressions into the first differential equation:
¥ =3z +y+ 2z =3z + 23 + coett

Then solve with the linear integrating factor method.

x' — 3z = 2¢3edt + coet

Wax)
(I/V) = 2¢3e” + c9e*!, where W = e 3. Cross-multiply:

(e73tx) = 2c3e®e 3 4 coette™3t, then integrate:
e Sty = c;;th + CQet +c1

o3t t

x = c3e® + cael + ¢1, divide by e3¢t
3t

’m = 03e5t + C2€4t + c1e

Part (c) The question reduces to showing that e and ®(#)®(0)~! have equal columns. This is done
by showing that the matching columns are solutions of %@’ = A« with the same initial condition @(0), then
apply Picard’s theorem on uniqueness of initial value problems.

Part (d) Take partial derivatives on the symbols c1, c2 to find vector solutions ) (t), U2(t). Define ®(t)
to be the augmented matrix of #(t), @a(t). Compute ®(0)~1, then multiply on the right of ®(¢) to obtain



e = ®(t)®(0)~". Check the answer in a computer algebra system or using Putzer's formula.

Part (e) The equation ®'(t) = A®(t) holds for every t. Choose t = 0 and then solve for A = ®'(0)®(0)~!.

Part (f) By C-H-Z, x = c1e3 cos(t) +cae3t sin(t). Isolate y from the first differential equation 2’ = 3z +y,
obtaining the formula y = 2’ — 3z = —c1e® sin(t) + c2€ cos(t). A fundamental matrix is found by taking

partial derivatives on the symbols ¢, ca. The answer is exactly the Jacobian matrix of ( y > with respect

to variables ¢y, ¢o.

B(t) = < e3t cos(t) e;tt sin(t) )

—e3tsin(t) e cos(t)

Use this page to start your solution.
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Chapter 6

3. (Linear and Nonlinear Dynamical Systems)
(a) Determine whether the unique equilibrium @ = 0 is stable or unstable. Then classify the equilibrium
point 4 = 0 as a saddle, center, spiral or node.

= 3 1
o -2 -1

(b) Determine whether the unique equilibrium @ = 0 is stable or unstable. Then classify the equilibrium
point & = 0 as a saddle, center, spiral or node.

7= ?)a
=\ 41

(c) Consider the nonlinear dynamical system

= x—2y%—y+32,

/

y = 222 —2axy.

An equilibrium point is z = 4, y = 4. Compute the Jacobian matrix A = J(4,4) of the linearized system
at this equilibrium point.

(d) Consider the nonlinear dynamical system

¥ = —x—2y*—y+32
y = 22% 4 2xy.

An equilibrium point is = —4, y = 4. Compute the Jacobian matrix A = J(—4,4) of the linearized
system at this equilibrium point.

I 2
(e) Consider the nonlinear dynamical system { 5/ B 5 ;52 ng4y +9 -2z,

At equilibrium point z = 3, y = 3, the Jacobian matrix is A = J(3,3) = ( _lg *;l )

(1) Determine the stability at ¢ = oo and the phase portrait classification saddle, center,
spiral or node at @ = 0 for the linear system %ﬂ' = Ad.

(2) Apply the Pasting Theorem to classify x = 3, y = 3 as a saddle, center, spiral or node
for the nonlinear dynamical system. Discuss all details of the application of the theorem.
Details count 75%.

. . . ¥ = —dx—4y+9— 22
(f) Consider the nonlinear dynamical system { J = 3243y

At equilibrium point = 3, y = —3, the Jacobian matrix is A = J(3,-3) = < _12 _g )

Linearization. Determine the stability at ¢ = oo and the phase portrait classification

- . . d
saddle, center, spiral or node at @ = 0 for the linear dynamical system @ﬁ = Ad.

Nonlinear System. Apply the Pasting Theorem to classify z = 3, y = —3 as a saddle,
center, spiral or node for the nonlinear dynamical system. Discuss all details of the
application of the theorem. Details count 75%.



Answers and Solution Details:

Part (a) Itis an unstable spiral. Details: The eigenvalues of A are roots of 72 —2r+5 = (r—1)2+4 = 0,
which are complex conjugate roots 1 + 2i. Rotation eliminates the saddle and node. Finally, the atoms
et cos 2t, et sin 2t have limit zero at t = —oo, therefore the system is stable at ¢ = —oo and unstable at
t = 0o. So it must be a spiral [centers have no exponentials]. Report: unstable spiral.

Part (b) It is a stable spiral. Details: The eigenvalues of A are roots of 72 +2r +5 = (r+1)2+4 =0,
which are complex conjugate roots —1 + 2i. Rotation eliminates the saddle and node. Finally, the atoms
e~tcos2t, e tsin2t have limit zero at t = oo, therefore the system is stable at ¢ = oo and unstable at

t = —o0. So it must be a spiral [centers have no exponentials]. Report: stable spiral.

- 3 1 —dy—1 B (1 -7
Part (c) The Jacobian is J(z,y) = < de— 2y o ) Then A= J(4,4) = ( 8 s )

o B —1 —4y—1 R A B
Part (d) The Jacobian is J(z,y) = ( do 1 2y - > Then A = J(—4,4) = ( s g )
Part (e) (1) The Jacobian is J(x,y) = ( —4- 2:§ _g ) Then A= J(3,3) = _12 _;l - The

eigenvalues of A are found from 72 +13r 418 = 0, giving distinct real negative roots —%i(%)\/ﬁ Because
there are no trig functions in the Euler solution atoms, then no rotation happens, and the classification must
be a saddle or node. The Euler solution atoms limit to zero at ¢ = oo, therefore it is a node and we report a
stable node for the linear problem @ = A% at equilibrium @ = 0.

(2) Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system:
stable node at x = 3, y = 3. The exceptional case in Theorem 2 is a proper node, having characteristic
equation roots that are equal. Stability is always preserved for nodes.

Part (f)
Linearization. The Jacobian is J(z,y) = ( —4- 2§ _;l ) Then A =J(3,3) = ( _12 _;l ) The

eigenvalues of A are found from r2 + 7r — 18 = 0, giving distinct real roots 2, —9. Because there are no trig
functions in the Euler solution atoms €%, e~ then no rotation happens, and the classification must be a
saddle or node. The Euler solution atoms do not limit to zero at ¢ = co or t = —o0, therefore it is a saddle
and we report a unstable saddle for the linear problem @ = A at equilibrium @ = 0.

Nonlinear System. Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for
the nonlinear system: unstable saddle at x = 3, y = 3—.

Use this page to start your solution.
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Final Exam Problems

2 3 . .
, A = < 0 4 ) using the matrix

Chapter 5. Solve a homogeneous system v’ = Au, u(0) = (

exponential, Zeibur’s method, Laplace resolvent and eigenanalysis.

Chapter 5. Solve a non-homogeneous system v’ = Au+ F(t), u(0) = ( 0 ), A= < 23 )7 F(t) = ( 3 )

using variation of parameters.



