Differential Equations 2280
 Midterm Exam 3
 Exam Date: 24 April 2015 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

Chapter 3

1. (Linear Constant Equations of Order n)
(a) $[30 \%]$ Find by variation of parameters a particular solution y_{p} for the equation $y^{\prime \prime}=2+6 x$. Show all steps in variation of parameters. Check the answer by quadrature.
(b) $[10 \%]$ A particular solution of the equation $L I^{\prime \prime}+R I^{\prime}+(1 / C) I=I_{0} \cos (10 t)$ happens to be $I(t)=5 \cos (10 t)+e^{-2 t} \sin (\sqrt{17} t)-\sqrt{17} \sin (10 t)$. Assume L, R, C all positive. Find the unique periodic steady-state solution I_{SS}.
(c) [40\%] Find the Beats solution for the forced undamped spring-mass problem

$$
x^{\prime \prime}+64 x=39 \cos (5 t), \quad x(0)=x^{\prime}(0)=0 .
$$

It is known that this solution is the sum of two harmonic oscillations of different frequencies. To save time, please don't convert to phase-amplitude form.
(d) $[10 \%]$ Given $5 x^{\prime \prime}(t)+2 x^{\prime}(t)+2 x(t)=0$, which represents a damped spring-mass system with $m=5$, $c=2, k=2$, determine if the equation is over-damped, critically damped or under-damped.
To save time, do not solve for $x(t)$.
(e) $[10 \%]$ Determine the practical resonance frequency ω for the spring-mass equation

$$
2 x^{\prime \prime}+7 x^{\prime}+50 x=500 \cos (\omega t)
$$

Answers and Solution Details:

All in progress.
Part (a) Answer: $y_{p}=x^{2}+x^{3}$.

Variation of Parameters.

Solve $y^{\prime \prime}=0$ to get $y_{h}=c_{1} y_{1}+c_{2} y_{2}, y_{1}=1, y_{2}=x$. Compute the Wronskian $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=1$.
Then for $f(x)=2+6 x$,
$y_{p}=y_{1} \int y_{2} \frac{-f}{W} d x+y_{2} \int y_{1} \frac{f}{W} d x$,
$y_{p}=1 \int-x(2+6 x) d x+x \int 1(2+6 x) d x$,
$y_{p}=-1\left(x^{2}+2 x^{3}\right)+x\left(2 x+3 x^{2}\right)$,
$y_{p}=x^{2}+x^{3}$.
This answer is checked by quadrature, applied twice to $y^{\prime \prime}=2+6 x$ with initial conditions zero.
Part (b) It has to be the terms left over after striking out the transient terms, those terms with limit zero at infinity. Then $x_{\mathbf{s s}}(t)=5 \cos (10 t)-\sqrt{17} \sin (10 t)$.
Part (c) The answer is $x(t)=-\cos (8 t)+\cos (5 t)$.
Use undetermined coefficients trial solution $x=d_{1} \cos 5 t+d_{2} \sin 5 t$. Then $d_{1}=1, d_{2}=0$, and finally $x_{p}(t)=\cos (5 t)$. The characteristic equation $r^{2}+64=0$ has roots $\pm 8 i$ with corresponding Euler solution atoms $\cos (8 t), \sin (8 t)$. Then $x_{h}(t)=c_{1} \cos (8 t)+c_{2} \sin (8 t)$. The general solution is $x=x_{h}+x_{p}$. Now use $x(0)=x^{\prime}(0)=0$ to determine $c_{1}=-1, c_{2}=0$, which implies the particular solution $x(t)=$ $-\cos (8 t)+\cos (5 t)$.
Part (d) Use the quadratic formula to decide. The number under the radical sign in the formula, called the discriminant, is $b^{2}-4 a c=2^{2}-4(5)(2)=-36$, therefore there are two complex conjugate roots and the equation is under-damped. Alternatively, factor $5 r^{2}+2 r+2$ to obtain the roots and atoms, then classify as under-damped.
Part (e) $\omega=\sqrt{\frac{k}{m}-\frac{c^{2}}{2 m^{2}}}=\sqrt{\frac{151}{8}}$.

Chapters 4 and 5

2. (Systems of Differential Equations)
(a) [30\%] Display eigenanalysis details for the 3×3 matrix

$$
A=\left(\begin{array}{lll}
5 & 1 & 1 \\
1 & 5 & 1 \\
0 & 0 & 5
\end{array}\right)
$$

then display the vector general solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
(b) [40%] The 3×3 triangular matrix

$$
A=\left(\begin{array}{lll}
4 & 1 & 0 \\
0 & 4 & 1 \\
0 & 0 & 5
\end{array}\right)
$$

represents a linear cascade, such as found in brine tank models.
Part 1. Use the linear integrating factor method to find the vector general solution $\mathbf{x}(t)$ of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.
Part 2. Explain why the eigenanalysis method fails for this example.
(c) [30\%] The Cayley-Hamilton-Ziebur shortcut applies especially to the system

$$
x^{\prime}=5 x+4 y, \quad y^{\prime}=-4 x+5 y
$$

which has complex eigenvalues $\lambda=5 \pm 4 i$.
Part 1. Show the details of the method, finally displaying formulas for $x(t), y(t)$.
Part 2. Report a fundamental matrix $\Phi(t)$.

Answers and Solution Details:

Part (a) The details should solve the equation $|A-\lambda I|=0$ for the three eigenvalues $\lambda=6,5,4$. Then solve the three systems $(A-\lambda I) \vec{v}=\overrightarrow{0}$ for eigenvector \vec{v}, for $\lambda=6,5,4$.
The eigenpairs are

$$
6,\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) ; \quad 5,\left(\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right) ; \quad 4,\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)
$$

The eigenanalysis method implies

$$
\mathbf{x}(t)=c_{1} e^{6 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{2} e^{5 t}\left(\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right)+c_{3} e^{4 t}\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)
$$

Part (b) The answer: $x=c_{3} e^{5 t}+c_{2} t e^{4 t}+c_{1} e^{4 t}, y=c_{3} e^{5 t}+c_{2} e^{4 t}, z=c_{3} e^{5 t}$.
Solution $b(1)$ Write the system in scalar form

$$
\begin{aligned}
x^{\prime} & =4 x+y \\
y^{\prime} & =4 y+z \\
z^{\prime} & =5 z
\end{aligned}
$$

Solve the last equation $z^{\prime}=5 z$ as
$z=\frac{\text { constant }}{\text { integrating factor }}=c_{3} e^{5 t}$.
$z=c_{3} e^{5 t}$
The second equation is
$y^{\prime}=4 y+c_{3} e^{5 t}$
The linear integrating factor method applies.
$y^{\prime}-4 y=c_{3} e^{-5 t}$
$\frac{(W y)^{\prime}}{W}=c_{3} e^{5 t}$, where $W=e^{-4 t}$,
$(W y)^{\prime}=c_{3} W e^{5 t}$
$\left(e^{-4 t} y\right)^{\prime}=c_{3} e^{-4 t} e^{5 t}$
$e^{-4 t} y=c_{3} e^{t}+c_{2}$.
$y=c_{3} e^{5 t}+c_{2} e^{4 t}$
Stuff the expression into the first differential equation:
$x^{\prime}=4 x+y=4 x+c_{3} e^{5 t}+c_{2} e^{4 t}$
Then solve with the linear integrating factor method.
$x^{\prime}-4 x=c_{3} e^{5 t}+c_{2} e^{4 t}$
$\frac{(W x)^{\prime}}{W}=c_{3} e^{5 t}+c_{2} e^{4 t}$, where $W=e^{-4 t}$. Cross-multiply:
$\left(e^{-4 t} x\right)^{\prime}=c_{3} e^{5 t} e^{-4 t}+c_{2} e^{4 t} e^{-4 t}$, then integrate:
$e^{-4 t} x=c_{3} e^{t}+c_{2} t+c_{1}$
Then divide by $e^{-4 t}$:
$x=c_{3} e^{5 t}+c_{2} t e^{4 t}+c_{1} e^{4 t}$
Solution b(2).
The matrix of coefficients is not diagonalizable, therefore the eigenanalysis method fails to apply.
Part (c) The equations

$$
x^{\prime}=5 x+4 y, \quad y^{\prime}=-4 x+5 y
$$

have coefficient matrix $A=\left(\begin{array}{rr}5 & 4 \\ -4 & 5\end{array}\right)$ with characteristic equation $(\lambda-5)^{2}+16=0$. The roots are $5 \pm 4 i$.
The Euler atoms are $e^{5 t} \cos (4 t), e^{5 t} \sin (4 t)$.
Solution c(1).
By C-H-Z, $x=c_{1} e^{5 t} \cos (4 t)+c_{2} e^{5 t} \sin (4 t)$. Isolate y from the first differential equation $x^{\prime}=5 x+4 y$, obtaining the formula $4 y=x^{\prime}-5 x=5 x+e^{5 t}\left(-4 c_{1} \sin (4 t)+4 c_{2} \cos (4 t)\right)-5 x=-4 c_{1} e^{5 t} \sin (4 t)+$ $4 c_{2} e^{5 t} \cos (4 t)$. Then the solution formulas are

$$
x=c_{1} e^{5 t} \cos (4 t)+c_{2} e^{5 t} \sin (4 t), \quad y(t)=-c_{1} e^{5 t} \sin (4 t)+c_{2} e^{5 t} \cos (4 t) .
$$

Solution c(2)

A fundamental matrix $\Phi(t)$ is found by taking partial derivatives on the symbols c_{1}, c_{2}. The answer is exactly the Jacobian matrix of $\binom{x}{y}$ with respect to variables c_{1}, c_{2}.
$\Phi(t)=\left(\begin{array}{cc}e^{5 t} \cos (4 t) & e^{5 t} \sin (4 t) \\ -e^{5 t} \sin (t) & e^{5 t} \cos (t)\end{array}\right)$.

Chapter 6

3. (Linear and Nonlinear Dynamical Systems)
(a) Determine whether the unique equilibrium $\vec{u}=\overrightarrow{0}$ is stable or unstable. Then classify the equilibrium point $\vec{u}=\overrightarrow{0}$ as a saddle, center, spiral or node. Sub-classification into improper or proper node is not required.

$$
\vec{u}^{\prime}=\left(\begin{array}{ll}
-3 & 1 \\
-2 & 1
\end{array}\right) \vec{u}
$$

(b) Consider the nonlinear dynamical system

$$
\begin{aligned}
& x^{\prime}=x-2 y^{2}+2 y+32, \\
& y^{\prime}=2 x(x+2 y)
\end{aligned}
$$

An equilibrium point is $x=-8, y=4$. Compute the Jacobian matrix $A=J(-8,4)$ of the linearized system at this equilibrium point.
(c) Consider the soft nonlinear spring system $\begin{cases}x^{\prime}= & y, \\ y^{\prime} & =-5 x-2 y+\frac{5}{4} x^{3} \text {. }\end{cases}$

At equilibrium point $x=0, y=0$, the Jacobian matrix is $A=J(0,0)=\left(\begin{array}{rr}0 & 1 \\ -5 & -2\end{array}\right)$.
(1) Determine the stability at $t=\infty$ and the phase portrait classification saddle, center, spiral or node at $\vec{u}=\overrightarrow{0}$ for the linear dynamical system $\frac{d}{d t} \vec{u}=A \vec{u}$.
(2) Apply the Pasting Theorem to classify $x=0, y=0$ as a saddle, center, spiral or node for the nonlinear dynamical system. Discuss all details of the application of the theorem. Details count 75%.
(3) Repeat the classification details of the previous two parts (1), (2) for the other two equilibrium points $(2,0),(-2,0)$, for which the Jacobian is $A=J(\pm 2,0)=\left(\begin{array}{rr}0 & 1 \\ 10 & -2\end{array}\right)$.

Answers and Solution Details:

Part (a) Answer: unstable saddle.
It is an unstable saddle. Details: The eigenvalues of A are roots of $r^{2}+2 r-1=0$, which are real roots $a=\sqrt{2}-1, b=-\sqrt{2}-1$ having opposite signs. No rotation eliminates the center and spiral. Finally, the atoms $e^{a} t, e^{b t} t$ have limit infinity, zero at $t=\infty$, therefore the system cannot be a node [nodes have limit $(0,0)$ at one of $t=\infty$ ot $t=-\infty]$. So it must be a saddle.
Part (b) The Jacobian is $J(x, y)=\left(\begin{array}{rr}0 & 1 \\ -5+\frac{15}{4} x^{3} & -2\end{array}\right)$. Then $A=J(-8,4)=\left(\begin{array}{rr}0 & 1 \\ -5 & -2\end{array}\right)$.

Part (c)

Solution (1)

The Jacobian is $J(x, y)=\left(\begin{array}{rr}0 & 1 \\ -5+\frac{15}{4} x^{2} & -2\end{array}\right)$. Then $A=J(0,0)=\left(\begin{array}{rr}0 & 1 \\ -5 & -2\end{array}\right)$. The eigenvalues of A are found from $r^{2}+2 r+5=0$, giving complex conjugate roots $-1 \pm 2 i$. Because trig functions appear in the Euler solution atoms, then rotation happens, and the classification must be a center or a spiral. The Euler solution atoms limit to zero at $t=\infty$, therefore it is a spiral and we report a stable spiral for the linear problem $\vec{u}^{\prime}=A \vec{u}$ at equilibrium $\vec{u}=\overrightarrow{0}$.

Solution (2)

Theorem 2 in Edwards-Penney section 6.2 applies to say that the same is true for the nonlinear system. Report: stable spiral at $x=0, y=0$.

Solution (3)

The Jacobian is $J(x, y)=\left(\begin{array}{rr}0 & 1 \\ -5+\frac{15}{4} x^{2} & -2\end{array}\right)$. Then $A=J(\pm 2,0)=\left(\begin{array}{rr}0 & 1 \\ 10 & -2\end{array}\right)$. The eigenvalues of A are found from $r^{2}+2 r-10=0$, roots $=-1 \pm \sqrt{11}$. The Euler atoms are $e^{a t}, e^{b t}$ where a, b have opposite sign. No rotation implies a node or a saddle. Because the atoms limit to $(\infty, 0)$ at $t=\infty$, then the node is eliminated and the equilibrium is a saddle. The Pasting Theorem implies the saddle is transferred to the nonlinear phase portrait. Report: unstable saddle.

