is of the form in (47) with

anicular
3 -2 0 -9t + 13
PHy=| —I 3 =2, fn)= 7t — 15
o 0 -1 3 —6r+ 7
In Example 7 we saw that a general solution of the associated homogeneous linear
1 system
1 3 2 0
| dx )
! — =1 -1 3 -2 |x
m , di 0 -1 3
is given by
47 2c1e' 4+ 200eY + 203
x.(1) = | 2, —2c3¢™ |,
roved ip crel — e+ e
n for the _ Y . .
and we can verify by substitution that the function
: general
3t
X,,(f) = 5
48) o
ry fune- . . .
= P) (found using a computer algebra system, or perhaps by a human being using a
= R method discussed in Section 5.6) is a particular solution of the original nonhomo-
geneous system. Consequently, Theorem 4 implies that a general solution of the
nonhomogeneous system is given by
in (47) x(1) = x.(t) + x,(1);
us. Let ‘ p0:
SHCON that is, by
1e exist
x1(7) = 2ce' + 2c2e¥ + 2c3€” + 31,
(49) xa(t) = 2c,€’ — 2C3€5’ + 5, O
xi(t) = cref — et + e’ + 2t
Problems
involves
1. Let 4. Let A and B be the matrices given in Problem 3 and let
stemn; A:[E _3} and B=I:3 4]. 2 -
stem. 4 7 3 ! x:[c ,] and y=| sins |.
Find (a) 2A +3B; (b) 3A —2B; (c) AB; (d) BA. cost
us . i - -
el 2. Verify that () A(BC) = (AB)C andth.at (b). A(B.+C) - Find Ay and Bx. Are the products Ax and By defined?
AB + AC, where A and B are the matrices given in Prob- . i
Explain your answer.
lem I and
0 2 5. Let
C=
[3 1] 32—l 0 -3 2
3. Find AB and BA given A=| 0 4 3 ) andB=|1 4 -3
=5 2 7 2 5 =1
2 0 -1 v
A _—_[ - ] and B=| -7 0. Find (a) 7A +4B; (b) 3A — 5B; (c) AB; (d) BA;
3 —4 5 3 _2 (C) A — II.




6. Let

2 4
B=[1 2}'

(a) Show that A|B = A,B and note that A| % A,. Thus
the cancellation law does not hold for matrices: that is, if
AB = A,Band B # 0, it does not follow that A; = A,.
(b)Let A = A, — A5 and use part (a) to show that AB = 0.
Thus the product of twononzero matrices may be the zero
matrix.

7. Compute the determinants of the matrices A and B in
Problem 6. Are your results consistent with the theorem
to the effect that

det(AB) =det(A) - det(B)

for any two square matrices A and B of the same order?
8. Suppose that A and B are the matrices of Problem 5. Ver-
ify that det(AB) = det(BA).

In Problems 9 and 10, verify the product law for differentia-
tion, (AB) = A'B+ AB’.

t 2r—1

1=t |+t

9.A(r)=[,1 I }zmdBU)=[ 3 4F ]
t

andB(t) =] 2¢ '
3t

w

1
10. A(t) = | —t 0
8 -1

In Problems 11 through 20, write the given system in the form
x' = P()x+ ().

11. X' = -3y, y = 3x
12 X' =3x = 2y, =2x 4y
13. X' =2x+4y+3e', 3 =5y — y—¢2
M. X' =tx—ey+cost,y =e'x+12y —sint
5. x'=y+,y=z+x7=x+y
16. x'=2x =3y, y'=x+y+2z,7 =5y -7z
17 ' =3y -4y +z+1,y =x—3:41% 2 =6y - Tz +1°
B. v'=tx—y+ez, vV =2x+12y—z,7 = e "x+3y+13:
19, x) = x3, x) = 2x3, % = 3xy, x} = 4y,
20. ,\‘i =x24+x;+ 1,;\'5 =x3+xy+1,
vy=xi a4y = 440

In Problems 21 through 30, first verify that the given vectors
are solutions of the given system. Then use the Wronskian to
show that they are linearly independent. Finally, write the gen-
eral solution of the system.

r 0! 2t

21 ¥ = _2 _f]xlxl:[_321],’(2:[_;:]
, -3 2 3 2 ]

22, x :(—3 4i|X;X|=[3zJ, ],x3=[ 5:|
! 3 _'1 7 ] 5 ]
23.)(:{5 __3]X;X| _—.e-’[l],n:e"[sil

4 F 4 ! . kY 1 2 1
24.)(:__2 l:IX,X|=8 1 , Xo =¢€ _2:'

,_[4 =37 3e* e
25. x' = 6 _7]x,x|=[ze?,:|,xg=[3e 5,:|

3 =2 0 2
26, X' =] -1 3 =2 (xsx =621,
| 0 —I 3 I
-2 2
X2 = ¥ 0|, x; =e" 2
I 1
0 1 1 1
27. x' =] 1 0 I xix;=¢" | 1
| 1 0 | ]
| 0]
X =¢ ! 0 [, x;=¢" |
—1 -1 |
1 2 ] |
28. x' = 6 —1| 0 |x;x; = 6
-1 =2 -1 —13
2 —1
X =e" 3|, xs=¢" 2
-2 |
-8 11 =2 3
29, x' = 6 9 2 xixy=¢ | =2 |,
—6 -6 1 2
| |
xa=é€'| =1 |,xs=¢"| —1
I 0
I —4 0 -2 |
,_ |0 | 0 O(... _,10
30. x' = 6 —12 —| 6:lx,x =¢ ol
0 -4 0 -1 |
0 0 1
_ 4|0 i | 10
Xa=¢ i T Xyg=¢ 0 Xy =2¢ 3
0 -2 0

In Problems 31 through 40, find a particular solution of the in-
dicated linear system that satisfies the given initial conditions.

31. The system of Problem 22: x,(0) = 0, x2(0) =5

32. The system of Problem 23: x;(0) = 5, x,(0) = —3

33. The system of Problem 24: x,(0) = 11, x2(0) = -7

34. The system of Problem 25: x,(0) = 8, x,(0) = 0

35. The system of Problem 26: x,(0) = 0, 1,(0) = 0,
3(0)=4

36. The system of Problem 27: x,(0) = 10, x,(0) = 12,
x3(0) = —1

37. The system of Problem 29: x(0) = 1, w:(0) = 2,
x3(0)=3

38. The system of Problem 29: x,(0) = 3. 00 = =7,
X3 (0) =11




2]

39.
40.

41.

42.

The system of Problem 30: x;(0) = x(0) = x3(0) =
n@ =1

The system of Problem 30: x(0) = I, xa(0) = 3,
x(0) =4,x40)=7

(a) Show that the vector functions

X](f)=[t§] and X2=[i;:|

are linearly independent on the real line. (b) Why does it
follow from Theorem 2 that there is 710 continuous matrix
P(¢) such that x; and x; are both solutions of x" = P(£)x?
Suppose that one of the vector functions

| @) | x@
X = [-\'2:(1)] and  xiry= [xzz(f) ]

is a constant multiple of the other on the open interval /.
Show that their Wronskian W(z) = |[x;;(z)]| must vanish
identically on /. This proves part (a) of Theorem 2 in the

43.

44.

45.

el IYIMATI NG N Y M I el I Al W i b - -

Suppose that the vectors X, (r) and X,(r) of Problem 42 are
solutions of the equation x’ = P(r)x, where the 2 x 2 ma-
trix P(¢) is continuous on the open interval /. Show that if
there exists a point a of I at which their Wronskian W (a)
is zero, then there exist numbers ¢, and ¢; not both zero
such that ¢;x, (a) + c2x2(a) = 0. Then conclude from the
uniqueness of solutions of the equation X’ = P(¢)x that

aixi(t) +eaxa(t) =0

for all ¢ in I; that is, that x, and x; are linearly dependent.
This proves part (b) of Theorem 2 in the case n = 2.
Generalize Problems 42 and 43 to prove Theorem 2 for i
an arbitrary positive integer.

Let x, (1), x:(¢), ..., X,{t) be vector functions whose ith
components (for some fixed i) x| (1), xi2 (1), . . ., Xin (£) are
linearly independent real-valued functions. Conclude that

case n =2. the vector functions are themselves linearly independent.

HW YT Jletelifei] Automatic Solution of Linear Systems

Linear systems with more than two or three equations are most frequently solved
with the aid of calculators or computers. For instance, recall that in Example 8 we
needed to solve the linear system

2¢ +2¢3 +2¢3 =0,
2cy —2c3 =12, (1)
ao— ¢+ =6

— - that can be written in the form AC = B with 3 x 3 coefficient matrix A, right-
[[2,2,21[2-8,-21[1,-1 N
2 111=+A (22 2 hand side the 3 x 1 column vector B = [O 2 6] , and unknown column vector
2 E_1 =21 C = [c| o)) C3]T. Figure 5.1.1 shows a TI calculator solution for C = A'B,
(1} 121 [61 ]_Eé 111 with the result that ¢; = 2, ¢ = =3, and ¢3 = 1. The same result can be found
using the Maple commands
with(linalg):
[ [a] A := array([[2, 2, 2], [2, O, -2}, [1, -1, 1]1]1):
21, B := array([[0], [2], [6] 1):
he in- A-LB>C . C := nmultiply(inverse(a),B);
tori; E 1'3% ] the Mathematica commands
A= {{2, 2, 2}, {2, O, -2}, {1, -1, 1}};
FIGURE 5.1.1. TI-86 solution B = {{0}, {2}, {6}};
of the system AC = B in (1). C = Inverse[A].B
=0, or the MATLAB commands
= 12, A=1[[2 2 2];([2 0 -2]; [ -1 1}}:
B = [0; 2; 6];
= 2, C = inv(A)*B
-1, Use your own calculator or available computer algebra system to solve “automati-

cally” Problems 31 through 40 in this section.




Problems

{ In Problems | through 16, apply the eigenvalue method of this

section to find a general solution of the given systemn. If initial

values are given, find also the corresponding particular solu-

I tion. For each problem, use a computer system or graphing
calculator to construct a direction field and typical solution
curves for the given system.

1oy =x+2x, ¥}=2x+x

2.0 =243, x3=20+1

3. x) = 3x +4x, xap=3x+2x; 6(0) =x:(0) = |
4, .\T; = 4.\'} -+ x3, .\'é = 6.X| = X2

5. a1 = 6x)— Ty, xy;=x —2x2

6. 1] = 9% |45, xi=—6x -20;x,(0) =1, x2(0) =0
7. %) = =354+ 4x;, x3=06x — 5x;

8 i =x = 5%, Xy=x1—x2

9 2%, —Sx, xy=4v; —2x; 0 (0) =2, x(0) =3
10. x) = —‘3.l'| - 2)’:, xé = 9,\‘] + 3.Y.'2

11. ,\'; X — 2(‘1, Xé = 2.\‘| + X235 X (O) = 0, XI(O) =4
12

13

14

15

16

-
]

-
I

A - 5\,‘2, Xé =X+ 3)’1

e X = 5% —9x, ap=2x—1x2

. xp =30 —4n, x; =404 3x

. xp = Txp —Sx, xy=4x+3x;

. x) = —=50x) +20x;, x5 =100x — 60x;

In Problems 17 through 25, the eigenvalues of the coefficient
matrix can be found by inspection and factoring. Apply the
eigenvalue method to find a general solution of each system.

17, x) = 4x; + 32+ 40, Xy =x + 7o+ 13,
Xy =4y 44y
18. x) = x + 2x2 42335, a3 =2v + Tay +x3,
.X; = 2.\'] 4+ xs +7X3
19. A’; = 4x|+x2+,\3, xé =X|+4X1+.\'3, .\‘; =X +x2+4x3
20. x; = 5.‘71 + X +3.\’3, xé =X +7X2 + X3,
Xy = 3x;+x2+ 513
21. &) = 5x,—6x3, x5 = 2x—x2—2x3, ¥y = dx—2x—4x,
22, x) = 35+ 20+ g,y = =5y —4xn - 2y,
.X; = 5.\'1 +5,X3 + 3.\‘3
23. A; = 3.\'] 4+ X2 4 x5, xé = —5.\'1 — 3.\'3 — A3,
.X:’,, = 5.\'| +5.X1 + 3.\'3
24, x; = 2x,+x2—x3, ¥y =—4v; —3x — X3,
).'3 = 4.\‘] +4.Xg + 2X3
25. x| = 5x 4 53 + 2x3, x; = —bx; — 6v3 — Su3,
AS = 6.\'] +6.Xz + 5.\'3
26. Find the particular solution of the system

dx, 3 +
—= 3x X1,
dt I 3
d 9

d't_ = 9.X| - X2+ 2.“,,
dx

d_l3 = —9.X1 + 4.\‘2 — X3

that satisfies the initial conditions x,(0) = 0, x2(0) = 0,
11(0) = 17.

The amounts x (1) and x2(t) of salt in the two brine 1
Fig. 5.2.7 satisfy the differential equations

d.\'l dx»
— = —kix;, — =kix —kxsy,
i 1X1 di 11X 2X2

where k; = r/V; fori = 1, 2. In Problems 27 and 28 1,
umes Vy and V, are given. First solve for x,(t) and x|
suming that r = 10 (gal/min), x,(0) = 15 (Ib), and x,((
Then find the maximum amount of salt ever in tank 2. |
construct a figure showing the graphs of x,(t) and x,(t)

Fresh water
Flow rate r

Tank |
Volume V,;
Salt x\ (0

Tank 2
Volume V,
Saltx4()

FIGURE 5.2.7. The two brine tanks of
Problems 27 and 28.

27. V, = 50 (gal), V5 = 25 (gal)
28. V, = 25 (gal), V5 = 40 (gal)

The amounts x,(t) and x1(t) of salt in the two brine ta
Fig. 5.2.8 satisfy the differential equations

Ix X
=l ~kyx) + kaxs, = kyxy = kaxa,
dt dt

where k; = r/V; as usual. In Problems 29 and 30, sol
x1 (1) and x»(t), assuming that r = 10 (gal/min), x,(0)
(Ib), and x,(0) = 0. Then construct a figure showit
graphs of x,(t) and x3(t).

FIGURE 5.2.8. The two brine tanks of
Problems 29 and 30.

29. V, =50 (gal), V5 = 25 (gal)
30. vV, =25 (gal), V5, =40 (gal)
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problems 31 through 34 deal with the open three-tank system
of Fig. 5.2.2. Fresh water flows into tank 1; mixed brine flows
from tank [ into tank 2, from tank 2 into tank 3, and out of tank
3. all at the given flow rate r gallons per minute. The initial
amounts x,(0) = xq (Ib), x2(0) = 0, and x3(0) = 0 of salt
in the three tanks are given, as are their volumes V), V, and
Vs (in gallons). First solve for the amounts of salt in the three
ianks at time t, then determine the maximal amount of salt that
wank 3 ever contains. Finally, construct a figure showing the
graphs of x1 (1), x2(t), and x;(z).

31, r=30,x%=27,V,=30,V,=15V; =10
32, r =060, xop =45, V, =20, V, =30, V3 =60
33. r= 60, Xp = 45, V| = 15, Vg = 10, V3 =130
34, r= 60, Xp = 40, V[ = 20, V'_) = 12, V3 =60

Problems 35 through 37 deal with the closed three-tank sys-
tem of Fig. 5.2.5, which is described by the equations in (24).
Mived brine flows from tank 1 into tank 2, from tank 2 into
tank 3, and from tank 3 into tank 1, all ar the given flow rate r
gallons per minute. The initial amounts x,(0) = xy (pounds),
12(0) = 0, and x3(0) = 0 of salt in the three 1anks are given,
as are their volumes V,, Va, and V3 (in gallons). First solve
for the amounts of salt in the three tanks at time 1, then deter-
mine the limiting amount (as t — +o0) of salt in each tank.
Finally, construct a figure showing the graphs of x,(t), x2(1),
and xy(t).

35 r= 120, Xp = 33, V[ =20, Vg = 6, V3 =40
36. I‘=10, .\'():]8, V1 =20, V2=50, Vz=20
37. r=60, xp =55V, = 60,V,=20, V3 =30

For each matrix A given in Problems 38 through 40, the zeros
in the matrix make its characteristic polynomial easy to calcu-
late. Find the general solution of X' = Ax.

r1 0 0 O
2 200
38. A= 03 3 0
LO 0 4 4
r-2 0 0 9
4 2 0 —10
39. A= 0 0 —I 8
L 0 0 0 1
r 2 0 0 0
=21 =5 =21 -9
40. A = 0 0 5 0
L 0 0 -2I =2

41. The coefficient matrix A of the 4 x 4 system

xp=4x+ xa+ a3+ T,
xy= x4+ 4o+ 106+ oy,
x;+ 10x; + 4x3+ x4,
=T+ x14+ x+4xy

1
X3

has eigenvalues Ay = =3, &, = =6, A3 = 10, and
Ay = 15. Find the particular solution of this system that
satisfies the initial conditions

.1‘.(0) = 3, .\'2(0) = .\'3(0) = 1. \4(0) = 3.

In Problems 42 through 50, use a calculator or computer sys-
temn to calculate the eigenvalues and eigenvectors (as illus-
trated in the 5.2 Application below) in order to find a general
solution of the linear system x' = Ax with the given coefficient
matrix A.

—40 —12 54
42. A=1| 35 13 —46
| —25 -7 34
M —20 11 13
43. A= 12 -1 -7
| —48 21 31
147 23 —202
44, A=| -90 -9 129
| 90 15 —123
-9 -7 =5 07
—12 7 119
45 A=1 o4 17 -19 -9
L—ls 13 17 9]
- 13 —42 106 139 T
2 —16 52 70
46. A=\ | ¢ _20 -3
L -1 —6 22 33
- 23 —18 —16 07
-8 6 7 9
. A=\ 54 97 _26 -9
L—zs 21 25 12
- 47 -8 5 =5
— 2 -9
8 Ao 0 32 18 2

139 —-40 -167 -—12]
—232 64 360 248

139 —14 52 -4 28
—22 5 7 8 =7
49. A=| 370 -—-38 —139 -38 76
152 —-16 =59 —13 35
| 95 —-10 -38 -7 23

r 9 13 0 0 0 -—13
-4 19 —10 -20 10 4
-30 12 -7 =30 12 18
—-12 10 —-10 =9 10 2

6 9 0 6 5 —I5
| —14 23 —10 -20 10 0

50. A=




Periodic and Transient Solutions

' 1t follows from Theorem 4 of Section 5.1 that a particular solution of the forced

system
| X' = Ax + Fy cos ot (36)
! will be of the form
|1| > X(1) = xX.(t) + X, (1), 37

where x,(#) is a particular solution of the nonhomogeneous system and X.(z) is a
solution of the corresponding homogeneous system. It is typical for the effects of
frictional resistance in mechanical systems to damp out the complementary function
solution x.(z), so that

x.t)— 0 as — +4o0. (38)
Hence x,(/) is a transient solution that depends only on the initial conditions; it
dies out with time, leaving the steady periodic solution x,(¢) resulting from the
external driving force:

x(t) = x,(1) as t — +oo. 39

As a practical matter, every physical system includes frictional resistance (however
small) that damps out transient solutions in this manner.

BEE] Problems

Problems 1 through 7 deal with the mass-and-spring system
shown in Fig. 5.3.11 with stiffiress matrix

| =k k) kz
K—[ o 4h+w]

and with the given mks values for the masses and spring con-
stants. Find the two natural frequencies of the system and de-
scribe its two natural modes of oscillation.

FIGURE 5.3.11. The mass-and-spring
system for Problems | through 6.

.y =ma=1; ky =0,k =2, k3 =0 (no walls)
cmp=ma=1; =1 k=4k=1
m=1lm=2; h=1Lk=k=2
Ly =ma=1; =Lk =2k=I
cmp=ma=1; =2k =1,k=2
oy =lm=2, =2k =k=4
oy =ma=1;, k=4 k=6k=4

R N N N

In Problems 8 through 10 the indicated mass-and-spring sys-
tent is set in motion froni rest (x](0) = x5(0) = 0) in its equi-
librium position (x(0) = x2(0) = 0) with the given external
forces F\(t) and F5(t) acting on the masses m, and m», respec-
tively. Find the resulting motion of the system and describe it
as a superposition of oscillations at three different frequencies.

8. The mass-and-spring system of Problem 2, with Fy(r) =
96cos5t, Fr(t) =0
9. The mass-and-spring system of Problem 3, with F(r) =
0, F>(1) = 120cos 3¢
10. The mass-and-spring system of Problem 7, with F(r) =
30cost, Fa(t) = 60cost
11. Consider a mass-and-spring system containing two
masses #1; = 1 and m, = | whose displacement func-
tions x(¢) and y(¢) satisfy the differential equations

x"=—40x + 8y,
¥y = [12x — 60y.

(a) Describe the two fundamental modes of free oscilla-
tion of the system. (b) Assume that the two masses start
in motion with the initial conditions

x(0) =19, x'0)=12
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and

y0) =3, () =6

and are acted on by the same force, F|(1) = Fy(t) =
—195 cos7t. Describe the resulting motion as a superpo-
sition of oscillations at three different frequencies.

In Problems 12 and 13, find the natural frequencies of the
three-mass system of Fig. 5.3.1, using the given masses and
spring constants. For each natural frequency w, give the ra-
tio a,:az:as of amplitudes for a corresponding natural mode
X = 4 COSWI, X3 = dp COSW!, X3 = U3 COSwWI.

1L2.m=nmr=m=1, hh=hkry=ks=ky=1

1B.my=mr=my=1, by =krh=kz3=k;=2
(Hint: One eigenvalue is A = —4.)

14. Inthe system of Fig.5.3.12, assume that my = 1, k; = 50,
k2 = 10, and Fy = 5 in mks units, and that ® = 10. Then
find m so that in the resulting steady periodic oscillations,
the mass m, will remain at rest(!). Thus the effect of the
second mass-and-spring pair will be to neutralize the ef-
fect of the force on the first mass. This is an example of
a dynamic damper. It has an electrical analogy that some
cable companies use to prevent your reception of certain
cable channels.

F(t) = Fycos wt

FIGURE 5.3.12. The mechanical
system of Problem 14.

15. Suppose that m; = 2, ma = L, & = 75, k» = 25,
Fo = 100, and o = 10 (all in mks units) in the forced
mass-and-spring system of Fig. 5.3.9. Find the solution of
the system Mx” = Kx + F that satisfies the initial condi-
tions x(0) = x’(0) =0.

16. Figure 5.3.13 shows two railway cars with a buffer spring.
We want to investigate the transfer of momentum that oc-
curs after car | with initial velocity vy impacts car 2 at rest.
The analog of Eq. (18) in the text is

" —C) Ct
X = X
Cy —(2

with ¢; = k/m; fori = 1, 2. Show that the eigenvalues of

the coefficient matrix A are A, =0and 1, = —¢| — ¢,
. . . T
with associated eigenvectors v = [ I ] and v, =
T
[ Cy —C2 ] .

xy(r) o xy(0)

FIGURE 5.3.13. The tworailway
cars of Problems 1 6 through 19.

17. If the two cars of Problem 16 both weigh 16 tons (so that
n = my = 1000 (slugs)) and & = 1 ton/ft (that is, 2000
1b/ft), show that the cars separate after /2 seconds, and
that x{ (t) = 0 and x5(¢) = vy thereafter. Thus the original
momentum of car | is completely transferred to car 2.

If cars 1 and 2 weigh 8 and 16 tons, respectively, and
k = 3000 Ib/ft, show that the two cars separate after /3
seconds, and that

18

0 =—3vw and x5(0) =+3u

thereafter. Thus the two cars rebound in opposite direc-
tions.

19. If cars 1 and 2 weigh 24 and 8 tons, respectively, and
k = 1500 Ib/ft, show that the cars separate after /2 sec-
onds, and that

) =+ivy and x5(1) = +3y

thereafter. Thus both cars continue in the original direc-
tion of motion, but with different velocities.

Problems 20 through 23 deal with the same system of three
railway cars (same masses) and two buffer springs (same
spring constants) as shown in Fig. 5.3.6 and discussed in Ex-
ample 2. The cars engage at time t = 0 with x,(0) =
x2(0) = x3(0) = O and with the given initial velocities (where
vy = 48 fi/s). Show that the railway cars remain engaged until
t = m/2 (s), after which time they proceed in their respective
ways with constant velocities. Determine the values of these
constant final velocities x|(t), x3(1), and xj(t) of the three cars
Sfor t > 7/2. In each problem you should find (as in Example
2) that the first and third railway cars exchange behaviors in
some appropriate sense.

20. x;(0) = vy, x3(0) = 0, x3(0) = —wy

21. x7(0) = 2w, x5(0) =0, x5(0) = —vy

22, x1(0) = vy, x3(0) = wp, x4(0) = =2,

23. x1(0) = 3wy, x5(0) = 2uy, x3(0) = 2y

24. In the three-railway-car system of Fig. 5.3.6, suppose that
cars | and 3 each weigh 32 tons, that car 2 weighs 8 tons,
and that each spring constant is 4 tons/ft. If x| (0) = vy
and x3(0) = xj(0) = 0, show that the two springs are
compressed until 7 = 7 /2 and that

X)) =—zu and x5(1) =xj() = +5v,

thereafter. Thus car 1 rebounds, but cars 2 and 3 continue
with the same velocity.

The Two-Axle Automobile

In Example 4 of Section 3.6 we investigated the vertical oscil-
lations of a one-axle car—actually a unicycle. Now we can
analyze a more realistic model: a car with two axles and with
separate front and rear suspension systems. Figure 5.3.14 rep-
resents the suspension system of such a car. We assume that
the car body acts as would a solid bar of mass m and length
L = Ly~ L,. It has moment of inertia I about its center of




mass C, which is at distance Ly from the fiont of the car. The
car has front and back suspension springs with Hooke's con-
stants ky and ki, respectively. When the car is in motion, let

x(1) denote the vertical displacement of the center of mass of

the car from equilibrium; let 8(1) denote its angular displace-
ment (in radians) from the horizontal. Then Newton's laws of
motion for linear and angular acceleration can be used to de-
rive the equations

Hl.\'” = (L| +lv))\ + (1\1L| —kng)G

(40)
10" = (kL) — kaLa)x — (ki LT + kaL3)6.

Tk

k, ks

Equilibrium
position

L’M"J\!‘ﬁwl‘v"M‘v‘u‘»'\!‘»""'»' i

=
=
=
=

v

L

FIGURE 5.3.14. Model of the
two-axle automobile.

25. Suppose that/n = 75 slugs (the car weighs 2400 1b), L, =
7 ft, L, = 3 {1 (it’s a rear-engine car), &, = k> = 2000
1b/ft, and I = 1000 ft-1b-s”. Then the equations in (40)
take the form

75x" 4 4000 - 80006 = 0,

10006" — 8000x + 116,0000 =0

(a) Find the two natural frequencies w; and w, of the car,
(b) Now suppose that the car is driven at a speed of v feet
per second along a washboard surface shaped like a sine
curve with a wavelength of 40 ft. The result is a periodic
force on the car with frequency « = 2mv/40 = mv/20,
Resonance occurs when with w = w, or w = w3. Find the
corresponding two critical speeds of the car (in feet per
second and in miles per hour).

26. Suppose that k; = k» = kand Ly = L» = {L ip
Fig. 5.3.14 (the symmetric situation). Then show that ey-
ery free oscillation is a combination of a vertical oscilla-
tion with frequency

w, = 2k/m

and an angular oscillation with frequency
w, = JkL>/(21).

In Problems 27 through 29, the system of Fig. 5.3.14 is taken
as a model jor an undamped car with the given parameters in
fps units. (a) Find the two natural frequencies of oscillation
(in hertz). (b) Asswme that this car is driven along «a siny-
soidal washboard surface with a wavelengtl of 40 fi. Find the
1o critical speeds.

27. m =100,/ =800, L, = L, =5,k =k, = 2000
28. m = 100,71 = 1000, L, = 6, L, = 4, ky = k> = 2000
29, m =100, 7 = 800, L, = L, =5,k = 1000. k» = 2000

Yy Earthquake-Induced Vibrations of Multistory Buildings

¥4
L)
x5(t)
xy(1)
vy (1)
xXa (1)

¥y (1)
Ground

Earthquake
oscillation

FIGURE 5.3.15. The
seven-story building.

kix,=x;_ ) ::TA(\,”—\,) L
1

FIGURE 5.3.16. Forces on the
ith floor.
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Inthis application you are to investigate the response 1o transverse earthquake ground
oscillations of the seven-story building illustrated in Fig. 5.3.15. Suppose that each
of the seven (above-ground) floors weighs 16 tons, so the mass of each is m = 1000
(slugs). Also assume a horizontal restoring force of k = 5 (tons per foot) between
adjacent floors. That is, the internal forces in response to horizontal displacements
of the individual floors are those shown in Fig. 5.3.16. It follows that the free trans-
verse oscillations indicated in Fig. 5.3.15 satisfy the equation Mx" = Kx with
n =7,m; = 1000 (for each i), and &, = 10000 (Ib/ft) for I = i < 7. The system
then reduces to the form x” = Ax with

10 0 0 0 0 07
20 10 0 0 0 0
10 -20 10 0 0 0
0 10 =20 10 0 0 Q)
0 0 10 =20 10 0
0 0 0 10 -20 10
0 0 0 0 10 —10 |

Once the matrix A has been entered, the TI-86 command eigVvl A takes about
15 seconds to calculate the seven eigenvalues shown in the A-column of the table
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nk 2, For instance, suppose that x;(0) = x,(0) = 0 and that x{(0) = x3(0) = vp.
Then the equations
X0 =c1+ a+ c3 = 0,
.\‘2(0) =c+ 11— ¢3 = 0,
¥0)y= —2c3— 23+ ¢y =,
\3(0} = — 2004+ 2c3 —cy =1y
are readily solved for ¢ = v, ¢; = —3vg, and c3 = ¢4 = 0, 50

X (1) = xa(t) = dug (1 —e7%),

x1(1) = x5(0) = we 2

In this case the two railway cars continue in the same direction with equal but ex-

ponentially damped velocities, approaching the displacements x; = v, = 1v; as
t — 400 )
1, Va) It is of interest to interpret physically the individual generalized eigenvector
solutions given in (33). The degenerate (Ao = 0) solution
ad 115}
Wi t0 x@y=[1 10 0]
nat 1s
= . describes the two masses at rest with position functions x; (1) = 1 and x2(¢) = 1.
The solution
oy =[1 1 -2 2]
corresponding to the carefully chosen eigenvector w; describes damped motions
x1(0) = ¢ ¥ and x2(t) = e ¥ of the two masses, with equal velocities in the
i same direction. Finally, the solutions x3(#) and x,(¢) resulting from the length 2
1tions

chain {v;, va} both describe damped motion with the two masses moving in opposite
directions. O

The methods of this section apply to complex multiple eigenvalues just as to
real multiple eigenvalues (although the necessary computations tend to be somewhat
(33) lengthy). Given a complex conjugate pair ¢ & 8i of eigenvalues of multiplicity £,
we work with one of them (say, o — Bf) as if it were real to find k£ independent
complex-valued solutions. The real and imaginary parts of these complex-valued
solutions then provide 2k reai-valued solutions associated with the two eigenvalues
A =a — fi and A = a + Bi each of multiplicity k. See Problems 33 and 34.

m Problems

Find general solutions of the systems in Problems | through . 2 0 0
22. In Problems 1 through 6, use a computer system or graph- 7. x = -7 9 7 |x
ing calculator to constructa direction field and tvpical solution | 0 0 2
curves for the given systen.
o ] EER R 25 12 0
(34) 1. ¥ = i 4 X 2. x = | I X 8. x = —18 -5 0ix
- - - : | 6 6 13
-9 _
3ax={) 1lx ax=|7 "«
L - . -19 12 84
iereas 7 1] 1 —a] 9. x' = 0 5 0 [x
SX=|g 3|y &X=[y o)X -8 4 3




[ —13 40 -48
10. ¥ =| -8 23 —24 |x
| 0 0 3
(-3 0 —47
1. ¥ =] -1 =1 -1 |x
10 1]
-1 0 17
12.x=| 0 -1 1]|x
[ 1 -1 -1
-1 0 1]
13.x=| 0 1 -4|x
| 0 1 =3 ]
T o 0 1]
4. ¥=| -5 =1 =5 x
L4 1 -2
-2 —9 0]
15. X' = I 4 0lx
| 13 1]
= 0 0]
16. ¥ =| =2 =2 -3 |x
2 3 4]
T 1 0 0
17. X = 18 7 4 |x
| -27 -9 -5
-1 0 0
18. x' = I 3 I |x
| -2 —4 -1
i -4 0 =2
, |0 I 0 0
B-x=l6 _12 -1 —6|*
Lo -4 0 —I
r2 1 0 1
, 10 2 1 0
20. x' = 0 0 2 ]:|x
L0 0 0 2
r—1 -4 0 O
L i 3 0 0
21. x' = 1 2 i 0 X
L 0o 1 0 1
ri 3 7 0
, |0 -1 -4 0
22. X' = 0 : 3 0 X
L0 —6 —-14 1

In Problems 23 through 32 the eigenvalues of the coefficient
matrix A are given. Find a general solution of the indicated
system x' = Ax. Especially in Problems 29 through 32, use of
a computer algebra system (as in the application material for
this section) may be useful.

39 8 -—16
23. x'=| =36 -5 6 |x; A=-1,3,3
72 16 =29

24,

25.

26.

27.

28.

29.

30.

31.

33.

28 50 100
X = 15 33 60 |x; A=-2,33
| —-15 -30 -57
[—2 17 4
x' =1 —1I 6 1x; A=2,22
L0 1 2
5 -1 I
X' = 1 3 0|x A1=3,3.3
| -3 2 i
(-3 5 =5
X' = 3 -1 31x, A=2,2,2
| 8 -8 10
F—15 -7 4
x = 34 16 —11 [x; A=2,2,2
177 5
r—1 11 =2
, L7 -4 -6 11| _
X=| s _; , 3% A=-—1,-1,2,2
L 6 =2 -2 6
2 | =2 i
, |0 3 =5 3. B
¥=lo -3 22 -ip |® r=-h-h22
Lo —27 45 —25
- 35 —12 4 30
, 22 -8 3 19 B
X = ~10 3 0 _9 x: A=1L1,11
L —27 9 —3 -23
ro1r =1 26 6 -3
0 3 0 0 0
X = -9 0 =24 -6 3 |x;
30 9 5 —1
| —48 -3 —138 -30 I8

1=2,23733
The characteristic equation of the coefficient matrix A of
the system

3 -4 1 0

e S S N
=lo o 3 -4
0o 0 4 3

d() = (A —61+252=0.

Therefore, A has the repeated complex conjugate pair
3 4 4i of eigenvalues. First show that the complex vec-
tors

v=[1 i 0 0] ad v=[9 0 1 i]

form a length 2 chain {v,, v} associated with the eigen-
value A = 3 — 4i. Then calculate the real and imaginary
parts of the complex-valued solutions

vie and  (vir +vy)e

to find four independent reai-valued solutions of x’ = AX.




34. The characteristic equation of the coefficient matrix A of form a length 2 chain {v,, v2} associated with the eigen-

the system value A = 2 + 3i. Then calculate (as in Problem 33) four
5 0 -8 -3 independent real-valued solutions of x" = Ax.
18 -1 0 0 35. Find the position functions x(¢) and x,(t) of the railway
X = 9 -3 —25 -9 |¥ cars of Fig. 5.4.1 if the physical parameters are given by

33 10 90 32

m=m=c=cc=c=k=1
is

SRy =02 — 4L+ 1372 =0 and the initial conditions are
Thercfore, A has the repeated complex conjugate pair x1(0) = x2(0) =0, x}(0) =x3(0) = w.
2 4 3i of eigenvalues. First show that the complex vec-
{OFS How far do the cars travel before stopping?

) ) a7 36. Repeat Problem 35 under the assumption that car 1 is
Ni= [ I 3+3i 0 —i ] , shielded from air resistance by car 2, so now ¢; = 0. Show

. . T that, before stopping, the cars travel twice as far as those
vw=[3 —10+9% -i 0] of Problem 35.

XN Jo)[[e)i[oli] Defective Eigenvalues and Generalized Eigenvectors

A typical computer algebra system can calculate both the eigenvalues of a given
matrix A and the linearly independent (ordinary) eigenvectors associated with each
eigenvalue. For instance, consider the 4 x 4 matrix

35 —12 4 30

| 2 8 3 19

A=1_10 3 o0 -9 ()
27 9 -3 -3

of Problem 31 in this section. When the matrix A has been entered, the Maple
calculation

with(linalg): eigenvectors(A);
.of [lr 41 {["'ll OI 11 1]! [OI ll 31 0]}]

or the Mathematica calculation

Eigensystem[A]
{{1,1,1,1},
{{-3,-1,0,3}, {0,1,3,0}, {0,0,0,0}, {0,0,0,0}}}

reveals that the matrix A in Eq. (1) has the single eigenvalue A = | of multiplic-
ity 4 with only two independent associated eigenvectors v; and v;. The MATLAB
command

pair [V, D] = eig(sym(3))

Jec-
provides the same information. The eigenvalue A = 1 therefore has defect d = 2.

. IfB = A — (1), you should find that B? # 0 but B* = 0. If
]
zen-

1ary

w=[100 0], w=Bu, u=Bu,

then {u;, u>,u3} should be a length 3 chain of generalized eigenvectors based on
the ordinary eigenvector uy (which should be a linear combination of the original
eigenvectors v; and v»). Use your computer algebra system to carry out this con-
struction, and finally write four linearly independent solutions of the linear system
Ax. x = Ax.
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m Problems

Find a fundamental matrix of each of the systems in Problems 5. %X = 3 2 :| X, x(0)= |: ; ]
1 through 8, then apply Eq. (8) 10 find a solution satisfying the 9 3"
given initial conditions.

-5
6. X = x, x(0)= [ :|
]x, x(0)=[_3] L4 3] 0

2

B ]x, x(O):[
a ]x, x(O):[

]

_ 2 s 0 -6 2
]X, x(0) = l:_l ] 7. X 2 -1 =2 |x, x(0)=
2
8. x - 2
3

The first two equations 8b + 16¢c = 0 and 4b + 8c = 0 are satisfied by b = 2
and ¢ = —1, but leave a arbitrary. With a = 0 we get the generalized eigenvector
uz = [ 0 2 -1 ]T of rank r = 2 associated with the eigenvalue A = 3. Because
(A — 3I)%u = 0, Eq. (34) yields the third solution

x3(1) = &' [u; + (A —3Dust]

0 3t
2 1. (40)
—1 -1

=e 2 |+
—1

OO O

4
2
0

o~ W
[y}
—

Il

Q

w

With the solutions listed in Egs. (39) and (40), the fundamental matrix

(1) = [x1() %0) x0)]

defined by Eq. (35) is

26 &1 3t 0 ] 2
d()=| & 0 26 with ®0) '=]1 -2 —4
0 0 —¢* 0 0 -1

Hence Theorem 3 finally yields

i = &) ®(0) !

[T 265 @3 3t 0o 1 2
=]e" 0 2¢3 1 -2 —4
0 0 —e¥ 0 0 -1

e 2e% —2e¥ 4 — (4431
=10 e 2¢% — 2€”
LO 0 e

O

Remark: As in Example 7, Theorem 3 suffices for the computation of N
provided that a basis consisting of generalized eigenvectors of A can be found. Al-
ternatively, a computer algebra system can be used as indicated in the project mate-
rial for this section. il




Compute the matrix exponential e for each system X' = Ax
given in Problems 9 through 20.

9. x;=5v) —4xs, x5 =2xy — a3
10, x| = 6x; — 6x3, x5 = dx; — 41,
11, x} = 5x; — 3x3, x5 = 2x;

12, x} = 5x) — 4xa, x5 = 33 — 2x,
13. .\'; = 9.\'| — 8x3, .\'é = 6,\'] —5.\'2
14. ¥ =10x; — 632, x5 = 12x) — 7y
15. x] = 6x; — 10x3, x5 = 2x; — 3x,
16. x; = 11x; — 15x3, x; = 6x; — 8x»
17. x|} =3x 4+ 02,5, =x, 4+ 310

18. x) =4x, 4+ 2xy, 3y = 2x) +4x,
19. .\'; = 9.1'| + 2x3, ,\‘é = 2.\’| +6.\'g
20, x; = 13x; 440, x5 =43 + Ty

In Problems 21 through 24, show that the matrix A is nilpo-
tent and then use this fact to find (as in Example 3) the matrix
exponential e,

- 6 4
21.A=[l --1] 2. A= J

-1 -1 30 -3
2A=|1 -1 1| 24 A=[5 0 7

0 0 0 30 -3

Each coefficient matriv A in Problems 25 through 30 is the
sum of a nilpotent matrix and a multiple of the identity matrix.
Use this fact (as in Example 6) to solve the given initial value
problem.

, 2 5 _ 4
25, X' = 0 z]x, x(O;:[7]

[ 70 _ 5
26. x' = 1 7], x(O)_[_lo}

1 2
27.x=10 1 X, x(0)=
_0 0
0
0
5

0
28 X' =410 5
0

29. x' =

3000 I
, | 63 0 0 BE
NxX=| g 53 o|>x xXO=1

2 9 6 3 !

31. Suppose that the n x n matrices A and B commute; that
is, that AB = BA. Prove that e**® = ¢*eB. (Suggestion:
Group the terms in the product of the two series on the
right-hand side to obtain the series on the left.)

32. Deduce from the result of Problem 31 that, for ev-
ery square matrix A, the matrix e* is nonsingular with

() ' =en,
A:[? (‘)]

33. Suppose that
Show that A = I and that A**' = A if n is a positive
integer. Conclude that

e =Tcoshr + Asinh1,

and apply this fact to find a general solution of X" = Ax.
Verify that it is equivalent to the general solution found by
the eigenvalue method.

34. Suppose that
0 2
A= [ B } |

Show that e = Icos2r + 1A sin2r. Apply this fact to
find a general solution of x' = Ax, and verify that it is
equivalent to the solution found by the eigenvalue method.

Apply Theorem 3 to calculate the matrix exponential ¢ for
each of the matrices in Problems 35 through 40.

3 4 1 23
35.A=[0 3] 3. A=|0 1 4
; (0 0 1
2 3 4 5 20 30
3.A=/0 1 3 3.A=|0 10 20
|0 0 I (0 0 5
ri 3 3 3 2 4 4 4
01 33 0 2 4 4
39, A = 00 2 3 .=, o 5 4
0 0 0 2 L0 0 0 3

CHCWNoJelllefolifeli} Automated Matrix Exponential Solutions

If A is an n x 12 matrix, then a computer algebra system can be used first to calculate
the fundamental matrix eA' for the system x' = Ax, then to calculate the matrix
product x(1) = e*'x; to obtain a solution satisfying the initial condition x(0) = Xo.
For instance, suppose that we want to solve the initial value problem

X, = 13x) +4xy,
4xy + 7xa;
11,  x,(0) =23,

-
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The first component of this column vector is

-l

w

|

-nf yvaf f nf
dr = —y —d ) —dt.
}’lf:l )l/ w ARG w ¢

If, finally, we supply the independent variable ¢ throughout, the final result on the
right-hand side here is simply the variation of parameters formula in Eq. (33) of
Section 3.5 (where, however, the independent variable is denoted by x).

m Problems

Apply the method of undetermined coefficients to find a par-
ticular solution of each of the systems in Problems 1 through
14. If initial conditions are given, find the particular solution
that satisfies these conditions. Primes denote derivatives with
respectto!.

x+2y+3,y=2x+y—1
2x+3y+5y=2x+y—=2

3x+4y, ¥y =3x+2y+1%5x(0)=y0)=0
dx4+y+e,y=6x—y—e;x0)=y0)=
6x—7y+ 10,y =x -2y — 2e”

Ox +y+2€,y = -8x — 2y + te
—3x+4y4sins,y =6x—5y x(0) =1, y0)=0
x —S5y+2sint, y = x — y—3 cost
x—5y+cos2r, ¥y =x—y

x =2y, y=2x — y+e'sint

x+4y+2,y =x+2y+3x(0) =1, y(0) = -1
x+y+2,y=x4+y-2

2x+y+2e,y =x+2y - 3¢

¥ v =2x+y+1,y =4x+2y+e*

1

Problems 15 and 16 are similar to Example 2, but with two
brine tanks (having volumes Vy and Va gallons asin Fig. 5.6.2)
instead of three tanks. Each tank initially contains fresh water,
and the inflow to tank | at the rate of r gallons per minute has
a salt concentration of cy pounds per gallon. (a) Find the
amounts x,(1) and x2(t) of salt in the two tanks after t min-
utes. (b) Find the limiting (long-term) amount of saltin each
tank. (c) Find how long it takes for each tank to reach a salt
concentration of | Ib/gal.

15. vV, =100, V, =200,r =10,¢g = 2
16. Vl = 200, Vg = 100, = 10, Cy = 3

In Problems 17 through 34, use the method of variation of pa-
rameters (and perhaps a computer algebra system) to solve the

initial value problem
X = Ax+ (1), x(a) = X,.

In each problem we provide the matrix exponential e as pro-
vided by a computer algebra systen.

' 6 —7 60 0
17. A=[l _2],f(r)= [90],x(0)=[0],

[——e" +76 Te™ — T ]

—e ' 4 eir Te~* — eSl

eAt —

—

18.

19.

20.

21

22.

23.

24,

25.

26.

27.

N

8.

Repeat Problem 17, but with f(r) replaced with [ 100r }

-50¢
| 2 180r 0
A=[2 _2],fm=[ 90],x<o>=[0],

e 3t +482' —26"3'-‘{-26’2'
—2e7% 4 2¢% de3 4 ¥

Ar _ 1
€ =53

elg
Repeat Problem 19, but with f(¢) replaced with [ T5e 0 ]
4 —1 18¢% 0
A= [ 5 —2]'f(’) = [ 30 ]”‘(O) = [0]’
—e! + 5e3l el — e}r
[ —5¢7 4 5¢3  Se! — ¥ :l
. . 28e!
Repeat Problem 21, but with f(r) replaced with 206 |
3 -1 7 3
Sk _3],f(,)_[5],x<0)_[5],

oA — 1+3t  —
9t | —3¢

Repeat Problem 23, but with (1) = l:’(_)z] and x(1) =
3
7 |
2 =5 4t 0

eAl —

A — cost + 2sint —5sint
- sint cost — 2sint
Repeat Problem 25, but with f(r) = [ Aé(;?;: ] and x(0) =

3
5 |
2 —4 3612 0
Az[l _2]1f(t)=[ 6t :|’x(0)—‘|:0:lv
oA — 1+2t -4
t | —2¢
Repeat Problem 27, but with f(r) = [

1)

4int

pur ] and x(1) =




o —1] _ [ sect o e 3te' (—13 -9 + 137
29“"‘[1 o= ]”‘(O)_[o]* e’\’=|:0 ¢ —3¢' + 3¢
A _ | cost —sins 0 0 e
| € =1 sint cost 8 g g g ! 8
_ H
| -_— . A= N = N —
| 30.A:[0 27 ) = ’C‘?Sf’],x(O):[g]. 3 0 0 0 4| fO=301,1.xO)=},
F 2 0_ | 7sin2s 00 0 0 ¢ 0
eA-:[C_‘_’S?)’ ‘““2’] | 4 8467 327480
sin2f  cos a0 1 3 81 + 617
12 3 0 0 “=lo o 1 4
3LA=|0 | 2[.f)=]| 0 [,x@=]0 | 0 0 0 !
0 0 I 6¢' 0 0 4 80 0 r4
e 2t [3I+2f2 A _ 0 0 0 8 _ 6t _ 2
|0 e D1t ¢ MA=109 2 4O o X0 =151
0 0 e 0 0 0 2 €2l _l
. 1 3 4 0 0 I 4t 4(=1+4e¥) 161(—1+¢) ]
' 32.A=[0 1 3 {.dn=| 0 |,x0)=]| 0 [, A | 0] 0 4(=1+4e")
'- 00 2 2e 0 0 0 e dre”
: 0 0 0 e |

LY Yelslildeljleli] Automated Variation of Parameters

The application of the variation of parameters formula in Eq. (28) encourages s
mechanical an approach as to encourage especially the use of a computer algeb;
system. The following Mathematica commands were used to check the results i
Example 4 of this section.

A= {{4,2}, {3,-1}};

x0 ={{7}, {3}};

£[t_] := {{-15 t Exp[-2t]},{-4 t Exp[-2t]}};

exp[A_] := MatrixExp[A]

x = exp[Axt].(x0 + Integrate[exp[-A+s].f[s], {s,0,t}])

The matrix exponential commands illustrated in the Section 5.5 application provid
the basis for analogous Maple and MATLAB computations. You can then chec
routinely the answers for Problems 17 through 34 of this section.




