
articular is of the form in (47) with

in (47)
us. Let
;eneous
re exist

3 —2 01 —9t+13
P(t)

=
—1 3 —2 , f(t) = 7i — 15

[ 0 —1 3] —6t+ 7

In Example 7 we saw that a general solution of the associated homogeneous linear
system

r —2 01
—l 3 —2x

L 0 —l 3]

and we can verify by substitution that the function

3t
x,,(t)=

L 2t

(found using a coniputer algebra system, or perhaps by a human being using a
method discussed in Section 5.6) is a particular solution of the original nonhomo
geneous system. Consequently, Theorem 4 implies that a general solution of the
nonhomogeneous system is given by

x(t) ç() + x,)(t):

Problems

1. Let

A=[ j] and B=[ 1].
Find (a) 2A+SB: (b) 3A — 2B: (c) AB; (d) BA.

2. Verify that (a) A(BC) = (B)C and that (b) A(B-f-C) =

A.B + AC. where A and B are the matrices given in Prob
lem I and

x2(t) = 2c1et — 2ce5t + 5,

,v3(t) c1e’ — c,e3t + cc5’ + 2t.

4. Let A and B be the matrices given in Problem 3 and let

r2tl r
x = I

—,
I and v = I sin

Ie I I
L cos I

Find Ay and Bx. Are the products Ax and By defined?
Explain your answer.

5. Let

*

(47)

(It

is given by

‘roved in
nfor the

general

(48)

ry func
P(t)x.

f2cte’ 2ce3’ + 2c3e5’
x, (t) = 2c1e’ — 2c3e”

L c1 e’ — c2e’ + c2e5’

that is, by

(49)

involves

stem;

stem.

)geneOU5

1(1) 2ce’ -I— 2ce3’ + 2c3e5’ + 3t,

10 2c=3 _]
3. Find AB and BA given

[1 1A=[
—

and B

r 3 2 —11 ro —3 2
A 0 4 3 and B = 1 4 —3

L— 2 7] L2 5 —l

Find (a) 7A + 4B; (b) 3A — 5B; (c) AB; (d) BA;
(e) A — 11.



F2 11 Fl 3Ai=[3
2]’ Aa=[1

—2

B=[ .

(a) Show that A1B = A,B and note that A1 A2. Thus
the cancellation law does not hold for matrices: that is, if
A1B A,B and B 0. it does not follow that A = A2.
(b) Let A = A —A2 and use part (a) to show that AB 0.
Thus the product of two nonzero matrices may be the zero
matrix.

7. Compute the determinants of the matrices A and B in
Problem 6. Are your results consistent with the theorem
to the effect that

det(AB) clet(A) det(B)

for any two sqLlare matrices A and B of the same order?
8. Suppose that A and B are the matrices of Problem 5. Ver

ify that det(AB) det(BA).

in Problems 9 and JO, i’erifv the product mu’ foi differenrut—
tion, (AB)’ A’B + AB’.

9. A(t)
2r— I

] and B(t)
[1_i 1+t]

10. A(t) = —t 0 2 and B(t) =

[ 8t —1 t3 [ 3,’

Jo Pioblenis ii throng/i 20, write the giren svvteni in the 101711
= P(r)x-f-f(z).

11. x’ —3v, y’ = 3.r
12. x’=3x—2y,y’=2x-I-
13. x’ = 2s + 4y + 3e’, y’ = — —

I --i14. x =tx—ey-f-cost,v =e X+ty—sinl
15. x’=)’-l-Z,y’=z +X,Z X-j-V
16. x’=2.r —3v,v’ =x + v -+2, z’ = 5s’— 7z
17. x’=3x—4y*z+t,” =x—3+t2,z’6v—7-+t
18. x’ = t.r—v+et,v’ =2c+t2v—z,z’ = e’x+3ty+t3
19. x =X, .i = 2x3. .i = 3.tc =

20. x -2 +3 H- 1.x, = .53 -t--Si H- t.

=x, +x4+t2,x = ti + .2 + t

In Problems 2/ through 30, first rel’i[t’ that the giveli vectors
are solutions oft/ic gwen s,’ste,n. Theti use the Wronskian to
show that they ore lmearls’ indepeiuleiit. Finally, write the geiz—
eral solution oft/ic system.

24. x[41]xxie:[1]x=e[1]

25. x
= [6 = [et ], = [3e_51 ]

r 3 —2 01 r2
26. x’

= —1 3 —2 x: x e’ 2

L 0 —l 3] [1
—2 2

X3t[ Xe5I[-2

I
27. x’

= r 1 0 1 x: x1 = e2’
LI 1 0] [1

r 11 rx2=e’I 0(.x=e-’j I
L-1] [-I

r’ 2 11 r I
28.x=[ 6 —1 0]x;xiz=[ 6

= e , xe’ [if
29. x’

= 6 9 2 1 x: x1 = e2’
L—6 —6 I] L 2

07 0
01 I , 0

x2=e

I 1.X
=e

0 .x4=e

oJ L—2 0

In Problems 3 / through 40, find a particular solution of the in-
cheated linear svsteni that satisjies the gilen initial conditions.

31. The system of Problem 22: x,(0) = 0, X2(0) = 5
32. The system of Problem 23:x (0) = 5, .v,(0) = —3
33. The syslem of Problem 24:x,(0) = 11,57(0) —7
34. The system of Problem 25: x1(0) = 8, x(0) = 0
35. The system of Problem 26:s (0) = 0.x(0) = 0,

53(0) 4
36. The system of Problem 27:x (0) = IO.x,(0) = 12,
.t3(0) = —l

37. The system of Problem 29: x,(0) = 1. .v(0) = 2,
.t3(0) = 3

38. The system of Problem 29: r1 (0) = 5, .v,(0) = —7,
.t(0) = Ii

6. Let

r ‘i r
x2 = e’ — 1 ,

= eJr — I

L 1] [ 0

r’ —4
lo I30. x

= I 6 —12
Lo —4

0 —2
0 0

—l —6
x;x1

0 —l

-!=e
[0

F 4 21 1 2e1 I e2’21. x=[3 i]X:xi=[31j.2[71

F —3 2 1 F e3’ 1 F2e’22. x
=[3 4]x.xi=[331].x7[

e2’

13 —11 7IFI123. x
=[5 _3j2’;xi_e [1jX2=e

[5



.-,.,

39. The system of Problem 30:x ,(O) = x2(O) = x3(O) =

4(0) =

40. The system of Problem 30:x (0) = 1, x,(O) 3,

.X3(O)=4,x4(O)=7

41. (a) Show that the vector functions

F
XI(r)=[2j and

are linearly independent on the real line. (b) Why does it

follow from Theorem 2 that there is 110 continuous matrix
P(t) such that x1 and x2 are both solutions of x’ = P(flx?

42. Suppose that one of the vector functions

= H’’’ 1 and x(t)
[2(t)

Lx2(1)J [X2(t)

is a constant multiple of the other on the open interval I.
Show that their Wronskian W(t) = )[x1(t)j must vanish

identically on!. This proves part (a) of Theorem 2 in the

case ii = 2.

43. Suppose that the vectors Xj (t) and xQ) of Problem 42 are

solutions of the equation x’ PQ)x, where the 2 x 2 ma

trix P(t) is continuous on the open interval I. Show that if
there exists a point a of I at which their Wronskian W(a)
is zero, then there exist numbers cj and c2 not both zero

such that c,x, (a) + C2X2(Q) 0. Then conclude from the
uniqueness of solutions of the equation x’ = P(t)x that

for all t in 1; that is, that x and x2 are linearly dependent.
This proves part (b) of Theorem 2 in the case ii = 2.

44. Generalize Problems 42 and 43 to prove Theorem 2 for a

an arbitrary positive integer.

45. Letx1(r). x2(t) x,(r) be vector functions whose ith
components (for sonic fixed i)x1, (1), .v2 (i) ,, (t) are

linearly independent real-valued functions. Conclude that

the vector functions are themselves linearly independent.

Linear systems with more than two or three equations are most frequently solved

with the aid of calculators or computers. For instance, recall that in Example 8 we

needed to solve the linear system

2c, -)- 2c + 2c3 = 0.

2c1 — 2c3 = 2.

C1 — c2 + c = 6

that can be written in the form AC B with 3 x 3 coefficient matrix A, right-

hand side the 3 x 1 column vector B
=

[0 2 6 and unknown column vector

C = [ci c2 c3
]T.

Figure 5.1.1 shows a TI calculator solution for C A— ‘B,

with the result that c = 2, c = —3, and c3 1. The same result can be found

using the Maple commands

with(linalg)

A array([[2, 2, 2], [2, 0, —2], [1, —1, 1]]):

B := array([[O], [2], [6] J):

C : iuultiply(inverse(A),B);

the !vlc,tI,e,natica commands

A = {{2, 2, 2), {2, 0, —2), (1, —1, 1}};

B = {{O}, {2}, {6}};

C = Inverse[A].B

or the MATLAB commands

A = [[2 2 2]; [2 0 —2]; [1 —1 1]];

B = [0; 2; 6];

C = inv(A)*B

Use your own calculator or available computer algebra system to solve “automati

cally” Problems 3) through 40 in this section.

5.1 Application Automatic Solution of Linear Systems

[[22,2] [2,l, —2] [1.-i
1] 1A

[[2 2 2 1
[2 -2]
[1 —1 1 1]

[101 [2] [6]]*B

(1)

[[‘3]
[2]
[63]

[[2
1-31
[1 3]

FIGURE 5.1.1. TI-86 solution
of the system AC = B in (I).

= 0.

2,

—7,



Problems

3x
cit

dx2
9xi — 11+2.13,

dt

cIx3

_

— —9xj + 4x
—

.13

FIGURE 5.2.7. The two brine tanks of
Problems 27 and 28.

FIGURE 5.2.8. The two brine tanks of
Problems 29 and 30.

The amounts x (t) and x (t) of’ salt in the two brine ti

Fig. 5.2.7 saifffv the differential equations

civ i
= —kixi

cit

dx’
= k1x1 — k,x2,

cit

where k1 = r/V for i = 1, 2. In Problems 27 antI 28 a
times V1 and V2 are given. First solve for x (t) and x,
stoning that ,‘ = 10 (gal/nun), x (0) = 15 (ib), and x2 ((
Then find the maxinuim amount of salt ever in tank 2. 1
construct a figure showing the graphs ofxi (t) and

Fresh water
Flow rate r

Tank I
Volume V1
Salt xQ)

In Pivblemns 1 through 16, cippis the eigenralue method of this
section to find a general solution of the given system. If initial

values are given, find also the corresponding particidar so/ti
tian. For each probleni, use a computer system or graphing
calculator to construct ci direction field and typical solution
cit rves fr the given s)’stein.

1. x=xI-1-2x, x4=2xi+.1,
2. x = 2x -l-3x,, x = 2xi -f--Il

3. x =3x1—f-4x, x4=3x1+-2x; .tj(O)=x2(0)=l
4. x = 4xj -+xl, x = 6.11 — .12

5. x = 6xj — 7x-,, x, = XI — 212
6. x = 9x+5x,, x = —

—2x2;xI(0) = 1, x(0) = 0
7. x = —3x +- 4x,, x = 6xi — 513

8. x x 5X2, ‘2=’t”•’2

9. x =2xi—5x. x.=4s1—2x,;xi(O)=2, x(0)=3
10. x = —3x — 2x,, v 9xj + 312

11. x =xj —2x,. x,=2xI i-s.ti(0)’0, x,(0) =4
12. .x = x1 —

512, 4=xi -—3-s2
13. x = Sxi —9x, x = 2xi —x-,
14. x = 3x —4.2, - =411 -l-3x’
15. x =7x—5x, x=4x1-f--3x2
16. .x = —50x -f- 20x,, x4 = I 00.x — 60x,

In Proble,n,v 17 through 25, the eigenvaluies oft/ac coeffi ient
matrix cciii be found by inspection and fictoring. Apply i/li’

eigenvahie method tofinci a general solution u/each syslemmi.

17.x=4xi+2+4x,x=xI-f-7x2+-x3,

= 4xI +12+4.13

18. X =xI+212+2x3,x=2x1 -l—7x1-f-x3.
= 2.vI+.v2+713

19. x =4xi-f-sa+-1. .r =.vI+4x2±x3, x = X

20. x = 5x-1 +12+3.13, x4 =-s ±712±1,

= 3x +12+513

21. x = 5xj—613, x, =2x1—x2—2x3, .v =4x1—2x,—4x3
22.x =3x1-j-2.vl-f-2x3, x =—5s1—4x,—2x,

= 5.v +5.12 + 313

23. x = 3xt +12+13, x, = —5x —3x, — .13,

= 5xt +5.12 + 313

24. ç = 2xi +12 —x, x, = —4.r1 — — 13,

= 4x + 4v, + 213
25.x = 5x +5.12+213. x = —61(—6x2—5x3.

= ôxi +6.52 + 513

26. Find the particular solution of the systeni

+ 13.

Tank 2
Volume V,
Salt x,(t)

27. 1 = 50 (gal). V2 = 25 (gal)

28. V = 25 (gal), V, = 40 (gal)

The amounts x1 (t) and x2(t) of’sali in the two brine ta
Fig. 5.2.8 satisf’ the differential equations

dx1
= —kixi +k2x2,

cit

clx2
= kixi — k,x,,

cit — —

where k, = r/V, as usual. In Problems 29 and 30, sod
11(t) and x(t), assuming that r = 10 (gal/mm), x1 (0)
(ib), and .v:(0) = U. Then construct a figure showim
graphs ofx1(t) ancixl(t).

that satisfies the initial conditions x1 (0) = 0, 12(0) = 0,
.13(0) = 17.

29. V = 50 (gal). V2 = 25 (gal)

30. V1 = 25 (gal), V = 40 (gal)



problems 31 ihroogh 34 deal tith the open three-tank s stein

of Fig. 5.2.2. Fresh water flows into tank 1; mi.ied brine flows

from tank 1 into tank 2, from tank 2 into tank 3, and out of tank

3; all at the given flow rate r gallons per nunute. The initial

ainOilii!5 x1 (0) .10 (ib), x(0) = 0, and X (0) = 0 of salt

in the three ranks a,-e glueii, as are their volunies V1, V2, and

V3 (ii gallons). First solue for the amounts of salt in the three

tanks at time t, then determine the ,nas-i,nal amount of salt that

tank 3 ever contains. Finaib; construct a figure showing the

graph.r ofsi (t), x-,(t), andx1(t).

31. r=30, = 27, V1 = 30, V,= 15, V3 = 10

32. r 60, o = 45, V = 20, V., = 30, V3 = 60
33. r 60, xo = 45, V 15, V = 10, V3 30
34. r=6O, .r0 =40. V = 20, V-= 12, 13 60

p,vble,ns 35 through 37 deal with the closed three-tank svs—

ten? of Fig. 5.2.5, which is clescribed by the equations in (24).

h’jixed brine flows froni tank 1 into tank 2, from tank 2 into

tank 3, and J)oni tank 3 into tank 1, all at the given flow rate r

gal/oils per minute. The initial amounts Xj (0) = (pounds).

X2(O) = 0, and .s(0) = 0 of salt in the three tanks tim-C given,

as are their volumes V, V2, and V3 (in gallons). First solve

for the amounts of salt in the three tanks at time t, then deter—

mine the limnitimig amount (as t —> ±) of salt in each tank.

Finally, construct a figure showing the graphs of.v i (t), x1 (t),

and .x3 (t).

35. 1 = 12O,x = 33. V1 20. V, = 6, V3 = 40
36.r=10.x0=18,Vj=20,V2=50.V’,=20
37. r = 60, .r 55, V1 = 60, V., = 20, V3 = 30

For each matrix A give/i in Problems 38 throng/i 40. the zeros

in the matrix make its characteristic poivnommal easy to calcu

late. Find the general solution of x’ = Ax.

1000

38.A=

0044

39.A=[

40. A
= [_2 —s : I

41. The coefficient matrix A of the 4 x 4 system

= 4x -1- x H- X3 H- 7x4,

has eigenvalues -i = —3. A = —6, = 10. and
A4 = 15. Find the particular solution of this system that
satisfies the initial conditions

3, .v(0) = .W) = I .54(0) = 3.

In Prcblemmis 42 through 50, use a calculator or computer s”s
teni to calculate the eigenvalues and eigenm’ectors (as il/us-
ti-at eel in the 5.2 Application below) in order to find ci genem-al

solution oft/ic linear sYstem x’ = Ax with the given coefficient

mnat,-i.i A.

—8 5 —5
32 18 —2

—40 —167 —121
64 360 248

—52 —14 28
7 8 —7

—139 —38 76
—59 —13 35
—38 —7 23

1

I

ks of

rksof

‘efor
=15
gthe

r —40
42.A=l 35

L —25

r —20

43.A=I 12
[—48

[ 147
44. A = —90

[ 90

9
_j7

45. A= 24
—18

13

46. A

= [j

—12
13

—7

11

21

23
—9
15

—7
7

—17
13

—42
—16

6
—6

54
—46

34

13
—7
31

—202
129

—123

—5

—19
17

106
52

—20
22

—16
7

—26
25

0
9

—9
9

139
70

—31
33

0
9

—9
12

47.A=[ :
48.A=[

—232

139

49.A= 370
152
95

—14
5

—38
—16
—10

= x1 H- H- 10.13 H- x4,

.lj H- 30.v H- H- .‘.

x=7x1H- X7H- x3H-4x4

F 9 13
—14 19

I —30 12
50. A = II —12 10

69

L—14 23

0
—10

—7
—10

0
—10

0
—20
—30

—9
6

—20

0
l0
12
10

5
10

—13
4

18

—IS
0



Periodic and Transient Solutions

It follows from Theorem 4 of Section 5.1 that a particular solution of the forced

system

x” = Ax+Focoswt (36)

will be of the form

x(t) = x(t) + x(i), (37)

where x(t) is a particular solution of the nonhomogeneous system and Xç(t) is a

solution of the corresponding homogeneous system. It is typical for the effects of

frictional resistance in mechanical systems to damp out the complementary function

solution x(t), so that

x(t) —÷ 0 as t — +oo. (38)

Hence ç (t) is a transient solution that depends only on the initial conditions; it

dies out with time, leaving the steady periodic solution x1,(t) resulting from the

external driving force:

x(t) —* x1,(t) as t — +00. (39)

As a practical matter, every physical system includes frictional resistance (however

small) that damps out transient solutions in this manner.

Problems

Problems I through 7 deal with the iiiass-and-spring system In Pi-obleins 8 throng/i 10 the indicated mass-and—spring sys—

shown in Fig. 5.3.11 with srijfiiess matFix tern is set in inotionfromn ,est (x (0) = x (0) = 0) in its eqni—

libnum position (x (0) = x2 (0) = 0) wit/i the gil’en external

r — (k1 + k2) k2 1 forces F (t) and F2 (t) acting on the masses in and in 2’ respec
K

=
k —(k -I- k) J tive/y Find the resulting motion oft/ic system and describe it

as a superposition of oscillations at three different frequencies.

and wit/i the given inks i’alues or the masses and spring con- 8. The mass-and-spring system of Problem 2 with F1(t) =

stants. Find the two naturalfrequeizcies oft/ic system and de- 96 cos 5t, F,(t) 0
scribe its tii’o natural modes of oscillation. 9. The mass-and-spring system of Problem 3, with F1 (t)

k
0, F2(t) = l2Ocos3t

10.

The mass-and-spring system of Problem 7. with F1 (t) =

30 cost, F2(t) 60cost
11. Consider a mass-and-spring system containing two

masses in1 = 1 and 1112 = 1 whose displacement func
FIGURE .3.1l. The mass—and—spring tions x(t) and v(t) satisfy the differential equations
system for Problems I through 6. -

l.mi=m2=l;k1=0,k,=2,k3=0(nowalls) x”=—40x+ 8y,

2. 11II = 1112 = 1; k1 I, k2 4, k3 1 12x — 60v.

3. mn =1 m=2; k1 =l,k=k3=2
-

— (a) Describe the two fundamental modes of free oscilla
4. in1 = in, = 1; k = I, k, 2, k3 = 1

— tion of the system. (b) Assume that the two masses start

5. i1l = i1i = I k1 = 2, k, I, k3 2 in motion with the initial conditions

6. ,n =1,m2=2; k =2,k,=k3=4

7. i’ll =012=1: kL =4,k2=6,k3=4
x(0) 19, x’(O)= 12
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= 3, s’(O) = 6

and are acted on by the same force, F(t) = F7(t) =

—195 cos7t. Describe the resulting motion as a superpo
sition of oscillations at three different frequencies.

j,t Problems 12 anul 13, find the natural [requencies of the
three—lilasS system of Fig. 5.3.], using the given masses and
spring constants. For each natural frequency en, give the ra

tio a :a2 :a1 of amplitudes Jr a corresponding natural mode
= a cOS(ot, x, = a coswt, .3 a cos rot.

12. mi itt2 = in = 1; k1 = k-, = k5 = ic. =

13. mi in, 1113 = 1; k1 = k-, = Ic3 = k4 2
(I-limit: One eigenvalue is X = —4.)

14. In the system of Fig. 5.3. 12, assume that in = I, Ic1 = 50,
Ic-, = 10, and F0 = 5 in n3ks units, and that en = ID. Then
find mu2 so that in the resulting steady periodic oscillations.
the mass in will remain at rest(!). Thus the effect of the
second mass-and-spring pair will be to neutralize the ef
fect of the force on the first mass. This is an example of
a dynamic damper. It has an electrical analogy that some
cable companies use to prevent your reception of certain
cable channels.

F(1) =F,1coso,t

k

.t1

FIGURE 5.3.12. The mechanical
system of Problem 14.

15. Suppose that in = 2, itt-, = . k = 75, A, = 25,
F0 = 100, and en = I() (all in n3ks units) in the forced
mass-and-spring system of Fig. 5.3.9. Find the solution of
the system Mx” = lix -I— F that satisfies the initial condi
tions x(0) = x’(O) = 0.

16. Figure 5.3.13 shows two railway cars with a buffer spring.
We want to investigate the transfer of momentum that oc
curs after car 1 with initial velocity V impacts car 2 at rest.
The analog of Eq. (18) in the text is

,, —ct ci 1x =1 l2
L C2 —C2]

with c = k/nt1 for i = 1, 2. Show that the eigenvalues of
the coefficient matrix A are X1 = 0 and A = —C1 — C2,

with associated eigenvectors v1
= [ 1 1 and v2 =

[ c1

.v(O)=O .,(O)—O

I rnj

FIGURE 5.3.13. The two railway
cars of Problems 16 through 19.

17. If the two cars of Problem 16 both weigh 16 tons (so that
in = 1000 (slugs)) and Ic = 1 ton/ft (that is, 2000
lb/ft), show that the cars separate after ir/2 seconds, and
that x (t) = 0 and x4(t) v0 thereafter. Thus the original
momentum of car I is completely transferred to car 2.

18. If cars 1 and 2 weigh 8 and 16 tons, respectively, and
k 3000 lb/fl, show that the two cars separate after /3
seconds, and that

x(r) = —v0 and x(t) = +u

thereafter. Thus the two cars rebound in opposite direc
tions.

19. If cars 1 and 2 weigh 24 and 8 tons, respectively, and
Ic = 1500 lb/fl, show that the cars separate after ir/2 sec

onds, and that

x(t) = —I—v0 and .v(t) = ±4v
thereafter. Thus both cars continue in the original direc
tion of motion, but with different velocities.

Problemits 20 through 23 deal tt-ith rite sante s’m’stenm of three
railway cars (caine masses) and two buffer springs (sante
spi-imtg constants) as shown iii Fig. 5.3.6 and discussed in Es—
atop/c 2. The cal-s engage at time t = 0 itith x1 (0)
x2(0) = x3 (0) = 0 and tilt/i the gil-en initial velocities (ithere
V,1 = 48fr/s). Show that tile mailmvav cams memnain engaged until
r /2 (S), after which timmte they proceed in titefr respective
ways itith con3tant velocities. Determine rite ta/tics of these
constant final velocities x(t), x(t), and x(t) of rite three cams
for i > sr/2. In Cue/i pie blent you should fimtd (as in Example
2) titat the first and third railmvuy cars exchange behaviors in
some appropriate sense.

20. x (0) = 00, x(0) = 0, x(0) = —v
21. x(0) =2v0,x4(0) =0,.v(0) =

22. x(O) = vo,x,(0) = vo,.v(0) = —2v
23. x(O) = 3v0, x4(0) = 2v, .v(0) = 2v
24. In the three-railway-car system of Fig. 5.3.6, suppose that

cars I and 3 each weigh 32 tons, that car 2 weighs 8 tons,
and that each spring constant is 4 tons/l’t. If x (0) = no
and x(0) = x(0) = 0, show that the two springs are
compressed until t = ir/2 and that

x(t) = —V and x(t) = x(t) = +V

thereafter. Thus car 1 rebounds, but cars 2 and 3 continue
with the same velocity.

The Two-Axle Automobile

In Example 4 of Section 3.6 we investigated rite vertical oscil
lations of a one—axle car—actually a unicycle. No mu we can
aitalyze a more realistic mitodel: a car with two axles and muir/i
separate front and i-ear suspension systems. Figure 5.3.14 rep
rese,tts the suspension system of stmcit a cam: We assume that
rite car body acts as would a solid bar of niass in and length
L = L —I— L,. It has mnommtent of inertia I about ir.c ceitter of

and
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itiass C, whk’I, is at distance L1 froiti the front of the cat: The

car has front and hack suspension springs ii’ith Ilooke ‘s con

stants k and k, respec’tis’elv. When the car is in motion, let

x (t ) denote the rertical displacement oft/u’ (elite, of mass of

the car iron eqinlihrinitm; let 0(1) denote its angular displace—

ilient (in radians) from the horizontal, Then Atesckin ‘s lan’s of

motion for linear and angular acceleration can he used to de—

rile the equations

mmix = —(k1 + k2)x -1-- (k1L1 —

I0”=(k1L1—kL2)x—(kiL+k2L)h.

4 Equilibriuns
I 2 poSitOfl

FIGURE 5.3.14. Model of the
two-axle automobile.

(40)

25. Suppose thatm = 75 slugs (the car weighs 2400 Ib). L1 =

7 ft. L2 = 3 ii (it’s a rear-engine car), 1i1 = k2 = 2000

lb/ft. and I = 1000 ftlbs2. Then the equations in (40)

take the form

75x” + 4000.v — 80000 0.

10000 — 8000.v -{- 116.0000 0.

5.3 Application

FIGURE 5.3.15. The
seven-story building.

(a) Find the two natural frequencies w5 and (02 of the car,
(b) Now suppose that the car is driven at a speed of is feet
per second along a washboard surface shaped like a Sine
curve with a wavelength of 40 ft. The result is a periodic
force on the car with frequency cv = 2jr 1/40 JT v/20
Resonance occurs when with cv = U or 02 = 022. Find the
corresponding two critical speeds of the car (in feet per
second and in nii les per hour).

26. Suppose that k1 = k2 = k and L1 = L2 = L in
Fig. 5.3.14 (the symmetric situation). Then show that ev
ery tree oscillation is a combination of a vertical Oscilla
tion with frequency

WI = 5/2k/in

and an angular oscillation with frequency

02’ =5/TL2/(21).

In Pm-oh/cuts 27 throng/i 29, 1/u’ system of Fig. 5.3.14 is taken

a c a ii mdcl fin an tmndainped car ii ‘it/i 1/ic’ g item? pal’anierecr in
jps units. (a) Find the mo natinalfi-eqiieiicies of oscillation
(in hertz). (b) Assume that this car is drn’en along a simni

soidal Il’ash/)oard stir/ace nit/i a n’at’e/ength of 40/i. Find the

[Ito ci’itical speeds.

27. in 100.1 = 800. L, = L-, =5,k1 =k-, =2000

28. in 100.! 1000. L1 = 6. L2 =4.k = k2 = 2000

29. in 100. 1 = 800. L = L’ 5, k, = 1000. k2 = 2000

.4, (1)

2, (1)

53(1)

‘2

VI (it

Earthquake-Induced Vibrations of Multistory Buildings

In this application you are to investigate the response to transverse earthquake ground

oscillations of the seven-story building illustrated in Fig. 5.3.15. Suppose that each

of the seven (above-ground) floors weighs 16 tons. so the mass of each is in = 1000

(slugs). Also assume a horizontal restoring force of k = 5 (tons per foot) between

adjacent floors. That is, (lie internal forces in response to horizontal displacements

of the individual floors are those shown in Fig. 5.3.16. It follows that the free trans

vet-se oscillations indicated in Fig. 5.3.15 satisfy the eqtiation Mx” = Kx with

ii = 7, am, = 1000 (for each I). and k = 10000 (lb/ft) for I I 7. The system

then reduces to the form x” = Ax with

Earthquake
oscillalion

Ground

A=

— .s,
— ) k(.s, , — .r,)

FIGURE 5.3.16. Forces on the
ith floor.

—20 10 0 0 0 0 0
10 —20 10 0 0 0 0
0 10 —20 10 0 0 0
0 0 10 —20 10 0 0
0 0 0 10 —20 10 0
0 0 0 0 10 —20 10

L 0 . 0 0 0 0 10 —10

(1)

Once the matrix A has been entered. the TI-86 command eigvl A takes about

15 seconds to calculate the seven eigenvalues shown in the X-column of the table



nk 2, For instance, suppose that x1 (0) = x2(0) = 0 and that x(0) = x(0) vo.
Then the equations

x1(0) = Ci + C2 + C3 = 0,

2(0) Cj + C2 C3 = 0,

.v (0) = — 2c, — 2c3 + C4 =

.v(0) = — 2c, + 2c3 — C4

are readily solved for c1 = vo, C2 = —UO, and (‘3 = c = 0, so

xi(t) = x(t) = vo (1 — e2’)

x(t) = x(t) = voe.

In this case the two railway cars continue in the same direction with equal but ex
ponentially clamped velocities, approaching the displacements x1 = = as

-* +.
It is of interest to interprct physically the individual generalized eigenvector

solutions given in (33). The degenerate (A0 = 0) solution
d u,
Wjto xi(t)=[l i o
iat is
= U2. describes the two masses at rest with position functions xi (t) I and x2(t) I.

The solution
X2(t) [1 1 —2 —2

1T e_2t

corresponding to the carefully chosen eigenvector v1 describes damped motions
xj (t) = e_21 and x(t) = e2’ of the two masses, with equal velocities in the
same direction. Finally, the solutions x3(t) and x4(t) resulting from the length 2

itions chain (vi , v2 both describe damped motion with the two masses moving in opposite
directions.

The methods of this section apply to complex multiple eigenvalues just as to
real multiple eigenvalues (although the necessaiy computations tend to be somewhat

(33) lengthy). Given a complex conjugate pair a ,Bi of eigenvalues of multiplicity k,
we work with one of then] (say, a — /31) as if it were real to find k independent
complex-valued solutions. The real and imaginary parts of these complex-valued
solutions then provide 2k real-valued solutions associated with the two eigenvalues
A = a — /11 and A = a

--
/31 each of multiplicity It. See Problems 33 and 34.

Problems

Find general solutions of the systems hi Problems 1 through 2 0 0 1
22, In Problems I through 6, use a coniffliter s1’stein or graph— 7. X’ = ‘ ‘ I X

tog CalcUlator to construct a threctionfieldancl typical .colittioii 0 0 2 J
curu’es for the gii’en system.

E—2 11 r3 —ii 25 12 01
(34) 1. X

[_1 4] X 2. x
= [I I 8. x’ = —18 —5 0 Ix

6 6 13]
rI —21 Fs —ii

X lx 4.x=j Ix
L— 5j L1 5j

r—l9 12 841
r 1 1 r t —4 1 9. x’ = 0 5 0 I

= L— 3i L 9i L —8 4 33]



[—13 40 —481
10. x’ = —8 23 —24 x

L 0 0 3]

r—3 0 —41
11. x’= —I —1 —1 Ix

L 1 0 1]

r—’ 0 1
12.x’=f 0 —1 1 Ix

L 1 —1 _i]

[—1 0 11
13.x’=J 0 1 —4Ix

L 0 1 —3]

[0 0

14.x’=I —5 —1 —5 x

L 4 1 —2

[—2 —9 °1
15.x’=I 1 4 Dlx

L 1 3 1]

r’ 0 0

16.x’=l —2 —2 —3 x
L 2 3 4

r i 0 01
17.x’=I 18 7 4 Ix

L—27 —9 —5]

r 1 0 01
i8.x’=) 1 3 1 jx

L—2 —4 -1]

Fl —4 0 —2
lo 1 0 0= 6 —12 —1 —6
Lo —4 0 —1

F2 1 0 1
lo 2 1 0

20.x=10
0 2 1

X

Lo 0 0 2

F—i —4 0 0-i
I 1 3 0 DI

21. x’ = I 1 2 1 0
L 0 1 0 ii
Fl 3 7 Di
10 —1 —4 01

22. x’ = I
0 1 3 oIx

LO —6 —14 I1

In Problems 23 through 32 the eigenralues of the coefficient

matrix A are gir’en. Find a general solution of the indicated

svsfern x’ = Ax. Especially in Problems 29 through 32, use of

a computer algebra system (as in the application material for

this section) mmiv be useful.

[ 39 8 —

23. x’=I —36 —5

[ 72 16 —29

[ 28 50 1001
24. x’ = 15 33 60 x; A = —2, 3, 3

L—15 —30 —57]

[—2 17 41
25. x’=I —1 6 1 Ix; A=2,2,2

[ 0 1 2]

[ 5 —1 11
26. x’=I 1 3 Dlx; A=3,3,3

L— 2 1]

[—3 5 —51
27. x’= I 3 —1 3 x; A =2,2,2

L 8 —8 10]

[—15 —7 41
28. x’= I 34 16 —11 lx: A =2,2,2

L 17 ‘ 5]

29.

1-2

]x; A=-I,-1,2,2

30. X = 0 —13 22 —12
X A—1.—1,2,2

0 —27 45 —25

F 35 —12 4 30
I 22 —8 3 19

31. x = I —10 3 0
x; A = 1, I, I,

L—27 9 —3 —23

11 —1 26 6 —3
0 3 0 0 0

32. x’ = —9 0 —24 —6 3 x;
3 0 9 5 —1

—48 —3 —138 —30 18
A = 2, 2. 3.3.3

33. The characteristic equation of the coefficient matrix A of
the system

3 —4 1 0
4 3 0 1
0 0 3 —4
0 0 4 3

(A) = (A2 — 6A + 25)2 = 0.

Therefore, A has the repeated complex conjugate pair

3 ± 4i of eigenvalues. First show that the complex vec

tors = [1 1 0 0
1T

and 2 = [9 0 1 i

form a length 2 chain {v1. v) associated with the eigefl

value A = 3 — 41. Then calculate the real and imaginary

parts of the complex-valued solutions

v1e” and (vit + v,)e”

to find four independent real-valued solutions of x’ = AX.

is

16 1
16 x: A=—1,3.3



34. The characteristic equation of the coefficient matrix A of form a ]ength 2 chain {v1. V7) associated with the eigen

the system value . = 2 + 31. Then calculate (as in Problem 33) four

2 0 —8 3
independent real-valued solutions of x’ = Ax.

—18 —1 0
35. Find the position functions x1 (t) and x2(t) of the railway

X
—3 —25

x cars of Fig. 5.4.1 if the physical parameters are given by

L 33 10 90 32
= = C1 = C = C = =

is
— 4 + 13)2 =

and the initial conditions are

Therefore, A has the repeated complex conjugate pair x1 (0) = .r7(0) = 0. x (0) = v(0) =

2 3i of eigenvalues. First show that the complex vec

tors How far do the cars travel before stopping?
36. Repeat Problem 35 under the assumption that car I is

V —/ 3_1_3j 0 —ji
I — - J ‘ shielded from air resistance by car 2, so now c1 = 0. Show

that, before stopping. the cars travel twice as far as those
= [3 —10 + 9, —l 0] of Problem 35.

5.4 Application Defective Eigenvalues and Generalized Eigenvectors

A typical computer algebra system can calculate both the eigenvalues of a given
matrix A and the linearly independent (ordinary) eigenvectors associated with each
eigenvalue. For instance, consider the 4 x 4 matrix

r 35 —12 4 30
22 —8 3 19

—10 3 0 —9
(1)

L—27 9 —3 —23

of Problem 31 in this section. When the matrix A has been entered, the Maple
calculation

with(linalg): eigenvectors(A);

[1, 4, {[—1, 0, 1, 1], [0, 1, 3, 0]}]

or the Mc,tlzei,uitica calculation

Eigensystem[A]
{{1,1, 1,1).,

{{—3,—1,0,3}, {0,1,3,0}, {0,O,O,O}, {O,O,O,O}}}

reveals that the matrix A in Eq. (1) has the single eigenvalue A I of multiplic

ity 4 with only two independent associated eigenvectors v1 and v2. The MATLAB

command

[V, D] = eig(syni(A))

provides the same information. The eigenvalue A = 1 therefore has defect ci = 2.

If B = A — (1)1, you should find that B2 0 but B3 = 0. if

= [1 0 0 0
1T,

= Bu1, u3 = Bu-.

then {uj, u.u} should be a length 3 chain of generalized eigenvectors based on

the ordinary eigenvector u3 (which should be a linear combination of the original

eigenvectors v1 and v2). Use your computer algebra system to carry out this con

struction, and finally write four linearly independent solutions of the linear system

x’ = Ax.

of

pair
vec

lfl
ary

Ax.



The first two equations 8b + l6c = 0 and 4b + 8c = 0 are satisfied by b = 2

and c = —1, but leave a arbitrary. With a = 0 we get the generalized eigenvector

tie = [0 2 —1 of rank r = 2 associated with the eigenvalue A = 3. Because

en (A. — 31)2u = 0, Eq. (34) yields the third solution

he
5). x3(t) e3t ju3 + (A

— 3I)ut1

ir ol 0 4 51 F 01 \ r 3t1
= e3’ f 2 + 0 2 4 2 t) = 2

.
(40)

0 0 o]L-lJ) [-I]

With the solutions listed in Eqs. (39) and (40), the fundamental matrix

(t) = [xj(t) X2(t) x3Q) j

(37) defined by Eq. (35) is

r 2e5t e3’ 3te3’ 1 0 1 2

be- (t) = e5 0 2e3’ with (0) = 1 —2 —4

islic [ 0 0 _e3tJ 0 0 —l

Hence ‘Theorem 3 finally yields

=

2e5’ e3 3te3’ 1 F 0 1 2

= I e5 0 2e3’ 1 —2 —4
[0 0 _e3’J [o 0 —l

e3 2e5t
— 2e3’ 4e’ — (4 + 3t)e3’

first =
0 e5t 2e31 — 2e3’

[0 0 e3t

n of

Remark: As in Example 7, Theorem 3 suffices for the computation of e1

38
provided that a basis consisting of generalized eigenvectors of A can be found. Al

( ternatively, a computer algebra system can be used as indicated in the project mate

T rial for this section.
c]

Problems

Find afundamental inalri.v of each of the systems in Pivbleins s. x’ = F 2 1 x x(0) = F I
but I through 8, then apply Eq. (8) to find a solution satisfying the [ 9 3 J ‘ [

ctOr given initial conditions.

lx’
= [ ]x. x(O)

= [3] 6. x’
= [ x(0)

= []
(39)

—1 7 5 0 —6 2

rthe
2. x’= x(0) =[7] 7. x’= H —1

_21x.
x(0)= H]

3.x’= x, x(0)=

4.x’=[ lix. x(O)=[]
8.

x’=H
-4 l]x. x(0)=[O]



Compute the matrix exponential eAt for each system x’ = Ax
give/i in Pivblenis 9 through 20.

9. x = 5xi 4x,, x = 1v1 —

10. x = 6x1 — 6x,, x = 4x — 4x

11. x = 5x — 3x, x = 2x
12. x = 5x — 4x, x = 3xi — 257
13. x = 9x 8x. x = — 5x
14. x = lOx1 —6x,.x = hr1 —7x
15. x=6x 10x2,1,=25{ —3x7
16. x = I 1x1 — 15x7, x 6x1 — 8x
17. x 3x + x,, .r4 = x1 -1- 3x
18. x =4x +2x,x = 2x1-f.4x2
19. x = 9i + 2x,, x = 2x +6x’
20. x = I3x +452,54 = 4xj + 7x2

In Problems 21 through 24, shalt? that the Inattix A is ni/po
tent and then use this frict to find (as in Example 3) the matrix
exponential

:: :=E
Ear/i coefficient matrix A in Pmvblenis 25 through 30 is the
sian of a nhlpoiem matrix and a mnniuple of the iclentit2 matrix.
Use this ftict (as in Example 6) to solve the given initial value
problew.

25. x’ =

26. x’ =

3000
6300 1

X
= 9 6 3 0

x, x(O)
=

12 9 6 3 1
31. Suppose that the n x a matrices A and B commute; that

is, that AB = BA. Prove that e11 = eeB. (Suggestion:
Group the terms in the product of the two series on the
right-hand side to obtain the series on the left.)

32. Deduce from the result of Problem 31 that, for ev
ery square matrix A, the matrix eA is nonsingular with
(eA) = e_A.

33. Suppose that

A=[ ].
Show that A2 = I and that A2’ = A if n is a positive
integer. Conclude that

et = I cosht + A sinht.

and apply this fact to find a general solution of x’ = Ax.
Verify that it is equivalent to the general solution found by
the eigenvalue method.

34. Suppose that

A=[ ].
Show that eAt = Icos2t + Asin2t. Apply this fact to
find a general solution of xt Ax, and verify that it is
equivalent to the solution found by the eigenvalue method.

Apply Theorem 3 to calculate the matrix exponential et for
each oft/ic matrices in Pvblenis 35 through 40.

H 2 3
36.A=I0 1 4

L 0 0 1

r5 20 30
38.A’=l 0 10 20

L 0 0 5

2444

0244
40.A=

0 0 2 4
0003

Automated Matrix Exponential Solutions

If A is an n x a matrix, then a computer algebra system can be used first to calculate
the fundamental matrix e’ for the system x’ = Ax, then to calculate the matrix
product x(t) = e’’x0 to obtain a solution satisfying the initial condition x(0) X.

For instance, suppose that we want to solve the initial value problem

= I3x +4x:,

= 4x1 +7x2;

27. x’ =

28. x’ =

29. x’ =

I
I

E3 41
35. A=’ I[0 Si

r2 3 41
37.A=iO I 31

Lo 0 ij
r1 3 31
10 1 3 31

39.A=’ I
100231
Lo 0 0 2]

• 55 Application

xj(0) = 11, x,(0) = 23.



The first component of this column vector is

nof
yp[yi

If, finally, we supply the independent variable t throughout, the final result on the

right-hand side here is simply the variation of parameters formula in Eq. (33) of

Section 3.5 (where, howevei the independent variable is denoted by x).

Problems

Apply the iiethod of undeter,ni,ied coe/ji ierits to find par—

twular solution of each of the systems in Problems I through

14. 1/ initial conditio,zs are given, fluzcl the particular solution

that satisfies these conditions. Primes denote derii’atii’es with

respect to t.

1. x’=x+2y+3,y’=2x+y—2
2. x’=2x+3v+5,s’=2x +y—2t
3. x’=3x+4v, v’ = 3x+2y+t2:x(0)=y(0)=0
4. s’=4x-1-y-l—e’.v’=6x —v-—e’;x(O)=v(O)= I
5. x’=6x—7y -1- l0,y’=x

—

2v — 2e’

6. x’ = 9s
--

y
-—

2e’, Vt = —8x — 2’ -I- te’
7.x’=—3x--4y-)-sint,y’=6x—5v;x(O)=l,y(0)O
8. x’ = x — 5v-l—2 sint, y’ = x

— -—3 cost
9. x’ =1 — 5v-l—cos2t, s” = .u — y

10. x’ = x — 2y, y = 2x — s +e’sint
11. x’=2x+4v-l-2,v’=.v+.2y-i—3;x(O)= l,v(0) —l

12.x’=.v+y+2t,v’=x+y—21
13. x’ = 2x -I- y -I- 2e1, y’ = x -1- 2)’ — 3et
14.

Prolilenis 15 and 16 aie similar to Ercmzple 2, but with two

brine tanks (hai’ing i’oluines V1 and V2 gallons as in Fig. 5.6.2)

instead of three tanks. Each tank initialls contains fresh watt’?;

and the inflow to tank I at the rate of r gallons pci— minute has

a salt concentration of c0 pounds per gallon. (a) Find the

amounts x (t) and x., (t) of salt in the two tanks after t mm—
mites. (b) Find the limiting (Iong-ternl) timnolint of salt in each

tank. (c) Fimicl hon long ii takes for each tank to reach a salt
concentration of I lb/gal.

15. V1 = 100, V2 =200,r= 10,c0 = 2
16. V1 =200, V7 100,,-=lO,c11 = 3

in Pi-oblenis /7 thm-ou,glm 34, use the method of variation ofpa—
ramileters (oar/perhaps a computer algebra s’i’stein) to so/ic the

initial value problem

x’ Ax-I—f(t), x(a) = x.

In ear-li problem we provide the matrix exponential e/t as
l’icled b-t a computer algebra svstenl.

71

7

I

La in
Sec

(31)

1) is

(32)

stem
tions

t the
n

lOOt 1
18. Repeat Problem 17, but with f(r) replaced with

[50t j
rf1 rol

19. A
= [ ;jf(t)

= [ 90]x(0)
= [o]’
2

eAt [ e3t + 4e2t _2e3t+ 2e I

= = _2e3t + 2e2’ 4e_3t + e2’ j
75e2t 1

20. Repeat Problem 19. but with f(t) replaced with [ 0

Else2’l rol
21. A [ ], f(t)

=
[30ev j,

x(0) [0 j’

—et + 5e3t et — eSt 1
e’

= [_5et+5e3t 5et _e3t]

28et1
22. Repeat Problem 21, but with f(t) replaced with [203i ]-
23. A=[ ]ft)=[]xO)=

r31

51[l+3t —t

[5]’

9t 1—3t

24. Repeat Problem 23, but with f(t)
= [ O 1 and x(l) =

I -]
r3l

7]-

25.A=[

eM = [cost + 2 sin t —5 sin t 1
sint cost —2sint ]

- Iandx(0)=26. Repeat Problem 25, but with fly)
= [4 cost 1

6smt

r31

5
r36t21 rol

27. A= [ ]f(t)
= [ 6t

]x(0) [oj’

et=[l+2t 4t 1
t l—2t]

4lnt 1
28. Repeat Problem 27, but with fly)

= [ ] and x(1) =

[1]-
17.A[ —].f(t=[].xo=[g],

eIt [ —e’ + 7e5’ 7e’ — 7e5 1
= — —e’ + e5 7et — e5t J



5.6 Application

(—13 — 9t)e7 + 13e2’
_3et 3e2

].ft1)=3O[].xtO [3]
1 4t 8t -f 612 32,2 + 8P

,Ar_ I 3t 81+612
£

— 0 0 1 4r
00 0 1
048

34.A=

0 0 0

Automated Variation of Parameters

The application of the variation of parameters formula in Eq. (28) encourages

mechanical an approach as to encourage especially the use of a computer algebi
system. The following A”Jathe,natica commands were used to check the results i
Exan1ple 4 of this section.

A = {{4,2}, {3,—1}};

xO ={{7}, {3J.);
f[t_] : {{—15 t Exp[—2t]},{—4 t Exp[—2t]}};

exp[A_] := NatrixExp[Aj

= exp[A*t].(xO + Iritegrate[exp[-A*sJ.f[s], {s,O,t}1)

The matrix exponential commands illustrated in the Section 5.5 application provid

the basis for analogous Maple and MATLAB computations. You can then chec

routinely the answers for Problems 17 through 34 of this section.

29. A=[ ]f(t)=
[sect] X(o)_[0]

,

F cost — sin!

[ sin! cost

0 tcos1 0
30. A=[2 0]f(t)_

[a].

r et

e”=I 0 et

[0 0

e’ —

cos 2t

L sin 2t
—sin 21

cos 2!

33.A=[3

Fl 2 3 0 ro
31. A = 0 1 2 f(t) = 0 x(0)

= j 0
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