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Stability

— —

Consider an autonomous system @ () = f(td(¢)) with f continuously differentiable in a
region D in the plane.

Stable equilibrium. An equilibrium point U, in D is said to be stable provided for each
€ > 0 there corresponds & > 0 such that (a) and (b) hold:

(a) Given U(0) in D with ||G(0) — Up|| < J, then TW(¢) existson 0 < t < oo.

(b) Inequality ||T(t) — Uy|| < €holds for 0 < t < oo.

Unstable equilibrium. The equilibrium point g is called unstable provided it is not
stable, which means (a) or (b) fails (or both).

Asymptotically stable equilibrium. The equilibrium point U is said to be asymptotically
stable provided (a) and (b) hold (it is stable), and additionally

(© limy o ||E(t) — To|| = O for ||FH(0) — T|| < o.



Isolated equilibria

An autonomous system is said to have an isolated equilibrium at i = U, provided Uy is
the only constant solution of the system in |G — Ug| < 7, for # > 0 sufficiently small.

Theorem 1 (Isolated Equilibrium)
The following are equivalent for a constant planar system @’'(t) = Au(t):

1. The system has an isolated equilibrium at @ = 0.
2. det(A) # 0.
3. The roots Ay, A; of det(A — AI) = 0 satisfy A\; A, # 0.

Proof: The expansion det(A — AI) = (A1 — A)(Az — A) = A2 — (A1 + A2)A + A1 Ao shows that det(A) =
A1A2. Hence 2 = 3. We prove now 1 =2. If det(A) = 0, then A = 0 has infinitely many solutions @ on a
line through 0, therefore & = 0 is not an isolated equlhbrlum If det(A) # 0, then Ad = 0 has exactly one
solution i = 0, so the system has an isolated equilibrium at @ = 0.



Classification of Isolated Equilibria

For linear equations

i'(t) = Ad(t),
we explain the phase portrait classifications

spiral, center, saddle, node

near an isolated equilibrium point U = 0, and how to detect these classifications, when
they occur.

Symbols A;, Ay are the roots of det(A — AI) = 0.

Euler solution atoms corresponding to roots A;, Ay happen to classify the phase portrait
as well as its stability. A shortcut will be explained to determine a classification, based
only on the atoms.
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Figure 3. Saddle

Figure 5. Proper node

Figure 2. Center

Figure 4. Improper node



Spiral

Al :Xz = a+’ibC0mp|eX,a # O,b > 0.
A spiral has solution formula

i(t) = e cos(bt) ¢, + e* sin(bt) s,

A —al
61 E ﬁ(O), _’2 = T ﬁ(O).

All solutions are bounded harmonic oscillations of natural frequency
b times an exponential amplitude which grows if a > 0 and decays
if a < 0. An orbit in the phase plane spirals out if a > 0 and
spirals inifa < 0.



Center

Al :Xz = a—|—’l:bC0mp|eX,CL = O,b >0
A center has solution formula

ti(t) = cos(bt) ¢, + sin(bt) Co,
1
61 - ﬁ(O), 62 = E Aﬁ(O).
All solutions are bounded harmonic oscillations of natural frequency

b. Orbits in the phase plane are periodic closed curves of period
27 /b which encircle the origin.



Saddle A\, Ayreal, A1\ <O
A saddle has solution formula
i(t) = eMIC, + ey,
A — AT A— )\
g = - u( ), T =—"""1(0).
A — Ao — A\
The phase portrait shows two lines through the origin which are
tangents at t = oo for all orbits.

A saddle is unstable att = oo and t = —oo, due to the limits of
the atoms e™?, e™ at t = F-oc.



Node A1, Agreal, A{A;, >0
The solution formulas are
’L_l:(t) = €>\1t (al —+ tc_iz) ) when Al = Az,
= %(0), dy = (A — X\1I)u(0),

'L_l:(t) = eAltE + e’\2t62, when Al # Az,

AT L A-—XI
- u( ), b,=—"""(0).
A=A Ay — A

Y

S“l

Definition 1 (node)
A node is defined to be an equilibrium point (g, Yo) such that

1. Either lim;_,(x(t),y(t)) = (o, yo) or else lim; , (x(t),y(t)) =
(20, Yo ), for all initial conditions ((0), y(0) close to (xg, Yo)-

2. For each initial condition (x(0), y(0)) near (xq, Yo), there exists a straight line L
through (&g, Yo) such that ((t), y(t)) is tangent at t = oo to L. Precisely, L has
a tangent vector ¥ and lim;_, o (’(t), y’(t)) = ¢ for some constant c.



Node Subclassification

Proper Node. Also called a Star Node.
Matrix A is required to have two eigenpairs (A1, ¥1), (Az, U2) with Ay = Aa.
Then (0) in R* = span(%;, ¥) implies

@(0) = 1T, + 2T, and @, = (A — X\ I)ii(0) = 0.

Therefore, 4 (t) = e*'a, implies trajectories are tangent to the line through (0, 0) in
direction U = @, /|a,|.

Because ©(0) = @, is arbitrary, U can be any direction, which explains the star-like phase
portrait.



Node Subclassification

Improper Node with One Eigenpair
The non-diagonalizable case is also called a Degenerate Node.
Matrix A is required to have just one eigenpair (A1, U;) and A; = As.
Then @' (t) = (@y + Ai@; + tAidz)eM implies @' (t)/|@/ ()| ~ d./|d,| at
|t| = oco. Matrix A — A1 has rank 1, hence
Image(A — A\ I) = span(?)

for some nonzero vector U. Then @y = (A — A1 I)w(0) is a multiple of ©.

Trajectory (%) is tangent to the line through (0, 0) with direction U.



Node Subclassification

Improper Node with Distinct Eigenvalues

The first possibility is when matrix A has real eigenvalues with A, < Ay < 0.
The second possibility Ay > A; > 0 is left to the reader.

Then @' (t) = Aibye™t + Xybyet implies @ (¢) /|@(t)| = b1 /|by| att = oo.
In terms of eigenpairs (A1, U1), (A2, U2), we compute by = ¢;¥; and by = ¢,¥, where
'IZ(O) = 0161 —|— 02’172.

Trajectory 4 (t) is tangent to the line through (0, 0) with direction ¥;.



Attractor and Repeller

An equilibrium point is called an attractor provided solutions starting nearby limit to
the point as £ — oo.

A repeller is an equilibrium point such that solutions starting nearby limit to the point
ast — —oo.

Terms like attracting node and repelling spiral are defined analogously.



Almost linear systems

A nonlinear planar autonomous system @' (t) = f(d(%)) is called almost linear at equi-
librium point U = Uy if there is a 2 X 2 matrix A and a vector function g such that

—

f(t) = A(d — 1) + g(1),
[g(@)]|

— — — Oo
ldi—dol| =0 || T — |
The function g has the same smoothness as f.
We investigate the possibility that a local phase diagram at U = g for the nonlinear

system @' (¢) = f(&(t)) is graphically identical to the one for the linear system ¥’ (¢) =
Ay (t) aty = 0.



Jacobian Matrix

Almost linear system results will apply to all isolated equilibria of @ (t) = f(TF(t)).
This is accomplished by expanding f in a Taylor series about each equilibrium point, which
implies that the ideas are applicable to different choices of A and g, depending upon which
equilibrium point Uy was considered.

Define the Jacobian matrix of f at equilibrium point U, by the formula
J = aug (9, £(d), 8, () ) -
Taylor’s theorem for functions of two variables says that
f(il) = J (T — T,) + &(T)

where (@) /||&@ — To|| — 0 as |G — To|| — 0. Therefore, for f continuously
differentiable, we may always take A = J to obtain from the almost linear system

@' (t) = f(d(¢)) its linearization ¥ (t) = A (t).



