
Gaussian Quadrature

Justin Boyer

April 20, 2012



Introduction

Gaussian quadrature is an amazing technique for numerical inte-
gration. Generally when interpolating polynomials one needs n+ 1
points to interpolate an nth degree polynomial. The same could be
expected for numerical integration. However Gaussian quadrature
integrates polynomials of degree 2n + 1 exactly with n + 1 points.
This is a very powerful technique.

Quadratures A numerical quadrature is a scheme, which is used to
approximate the integral of a given function over a finite interval.
The following is known as the Newton-Cotes formula, the right hand
side is an approximation of the the integral on the left hand side,
where the ai are coefficients, and xi are roots:∫ b

a

f(x)dx ≈
n∑

i=0

aif(xi), xi ∈ [a, b]. (1)

Different formulas give different ai, the Newton-Cotes formulas
chooses the xi evenly. Generally this is a straight-forward approach
and easily understandable and implementable. On large intervals,
the Newton-Cotes formulas have an error of order hk where h is
step size of xi and k is greater than one and depends on the method
used. Another quadrature is Gaussian quadrature, which chooses xi

and ai such that the error is minimized. This choice of xi is made
by finding the roots of an nth-order Legendre polynomial Pn(x).
The family of Legendre polynomials are a collection of polynomials,
{P0(x), P1(x), . . . , Pn(x), . . . }, where the polynomials are monic and
orthogonal to each other with respect to ω(x) = 1. Orthogonality
in this context is with respect to the L2 inner product, i.e.,∫ 1

−1

Pn(x)Pm(x)dx = 0

except when n = m.

Gaussian Quadrature chooses xi, and ci for i = 1, 2, . . . , n, such
that: ∫ 1

−1

P (x)dx ≈
n∑

i=1

ciP (xi), xi ∈ [−1, 1]. (2)

The integral on the left hand side is equal to the sum on the right
hand side for any polynomial, P (x), of degree strictly less than 2n.1

1Burden-Faires Numerical Analysis 8th ed., pg 223

1



How do we find the polynomials such that the above equation holds.
For a polynomial of degree 0 we use the easiest such polynomial,
P0(x) = 1. Likewise for a polynomial of degree 1 we use P1(x) = x.
These polynomials are orthogonal and monic, however for polyno-
mials where the degree is greater than two this will not work so
conveniently, since we want the polynomials to be monic and or-
thogonal. This is where Gram-Schmidt orthogonalization comes in
handy. We can use Gram-Scmidt to generalize the process for poly-
nomials of degree n > 2, which constructs an orthonormal basis of
functions. The Legendre polynomials, P0(x), P1(x), . . ., are one such
set of linearly independent functions. The points needed to give ex-
act results (for a polynomial of degree less than 2n−1) for equation
(2) are the roots of an nth degree Legendre polynomial. Likewise the
weights, ci, necessary for the right hand side of equation (2) come
from the coefficients of the Legendre polynomials.

Formulation

The first step towards generating the roots, xi, and weights, ci, for
Gaussian Quadrature is to construct the corresponding polynomi-
als. By applying Gram-Schmidt orthogonalization to the polynomi-
als 1, x2, x3, · · · , on the interval [−1, 1] we construct the Legendre
polynomials, which we can then use to find the roots and the coef-
ficients. Gram-Schmidt orthogonalization uses the fact that the L2

inner product of two different degree polynomials will be zero, but
the L2 inner product of two polynomials with the same degree will
be one. Given this concept of the Gram-Schmidt orthogonalization,
the actual calculation is given by a three term recursion formula,
i.e., the ith polynomial (denoted φi) may be written in terms of the
(i− 1)th and the (i− 2)th polynomials.

φi(x) = (x−Bi)φi−1(x)−Diφi−2(x) (3)

where Bi =
∫ 1
−1 x[φi−1(x)]

2dx∫ 1
−1[φi−1(x)]2dx

and Di =
∫ 1
−1 x[φi−1(x)φi−2(x)]dx∫ 1

−1[φi−2(x)]2dx

This formula may look different than the Gram-Schmidt formula
we are familiar with for vectors. But it is not, for vectors we have:

ui = vi −
i−1∑
l=1

< vi, ul >

< ul, ul >
ul (4)

where < vi, ul > denotes the inner product between vi and ul. In
order to see that the idea is the same, think of xφi as the vector we

2



are projecting, let’s call it vi. Then we have

ui = vi −
< vi, vi−1 >

< vi−1, vi−1 >
vi−1 −

< vi, vi−2 >

< vi−2, vi−2 >
vi−2 (5)

which is our familiar Gram-Schmidt orthogonalization and is the
same as (3) if we note that ui = φi. Additionally (3) is only a three
term recursion, because if we carry out more terms all of the them
will be zero since two different degree polynomials are orthogonal.
Thus using Gram-Schmidt orthogonalization we build a family of
orthogonal, monic polynomials. The next step in Gaussian quadra-
ture is to then compute the roots, xi, of these polynomials. This
can be done relatively easy using Newton’s Method. Once the roots
have been calculated the weights ci are found using the roots and
Lagrange polynomials. We then have a quadrature that is exact for
polynomials of degree 2n+ 1.

Another interesting linear algebra tidbit regarding Legendre poly-
nomials is the fact that the Legendre differential equation is:

d

dx
[(1− x2)

d

dx
P (x)] = −λP (x) (6)

which is just an eigenvalue problem. It turns out that the Legendre
polynomials are the eigenfunctions of this particular operator.

Example

In this section we will demonstrate an example in which we find
the Legendre polynomials up to degree 3, then use those to calculate
the integral of the polynomial of degree 5 exactly, e.g.,

∫ 1

−1
5x5−7x3+

x+ 4dx will be calculated exactly using a polynomial of degree 3.
First we start with the easiest polynomial, P0(x) = 1. We ap-

ply G-S (Gram-Schmidt orthogonalization). P1(x) = x − <x,1>
<1,1>

=

x−
∫ 1
−1 x∗1

2dx∫ 1
−1 1dx

, which we swiftly calculate to be, P1(x) = x. Next is,

P2(x), which is not so straightforward, but still not too bad, we’re

just integrating polynomials, using (G-S) P2(x) = x2 − <x2,x>
<x,x>

x −
<x2,1>
<1,1>

= x2 −
∫ 1
−1 x

2∗xdx∫ 1
−1 x

2dx
x −

∫ 1
−1 x

2∗1dx∫ 1
−1 1dx

. Computing the necessary in-

tegrals we arrive at P2(x) = x2 − 1/3. Following the same blueprint
we arrive at P3(x) = x3 − 3/5x.

Now that we have our family of polynomials we set about finding

the roots. Using Newton’s Method, xn = xn−1 − f(xn−1)
f ′(xn−1)

makes

short work out of an otherwise difficult task. I used Matlab, but

3



Maple and Mathematica also have root finders. The roots and the
respective coefficients are:

n roots coefficients
2 .5773502 1

-.5773502 1
3 .7745966 .5555556

0 .8888889
-.7745966 .5555556

We can now use these values to calculate the value of the integral:∫ 1

−1

5x5 − 7x3 + x+ 4dx = (7)

.̄5(5(.7745966)5 − 7(.7745966)3 + .7745966 + 4) + .̄8 ∗ 4 + (8)

.̄5(5(−.7745966)5 − 7(−.7745966)3 − .7745966 + 4) (9)

which my computer calculated to be 8.000000. Integrating the left
hand side, we arrive at 5

6
x6 − 7

4
x4 + x2

2
+ 4x|1−1 = 43

12
− −53

12
= 8.

How cool is that? We plugged in the roots and weights from a
third degree polynomial and got an exact result of a fifth degree
polynomial. In other words with a third degree polynomial we were
able to calculate the integral of a fifth degree polynomial exactly.
So where would you use this? Taylor series comes to mind, suppose
you have a nasty integral, which you can not evaluate by hand, you
could approximate it with a Taylor series and then use Gaussian
Quadrature and get a respectable answer.

4


