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Vector Space V
It is a data set V plus a toolkit of eight (8) algebraic properties. The data set consists of
packages of data items, called vectors, denoted ~X , ~Y below.

Closure The operations ~X + ~Y and k ~X are defined and result in a new vector which is also
in the set V .

Addition ~X + ~Y = ~Y + ~X commutative
~X + (~Y + ~Z) = (~Y + ~X) + ~Z associative
Vector ~0 is defined and ~0 + ~X = ~X zero
Vector − ~X is defined and ~X + (− ~X) = ~0 negative

Scalar
multiply

k( ~X + ~Y ) = k ~X + k~Y distributive I
(k1 + k2) ~X = k1

~X + k2
~X distributive II

k1(k2
~X) = (k1k2) ~X distributive III

1 ~X = ~X identity

The 8 Properties

+
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Figure 1. A Vector Space is a data set, operations + and ·, and the 8-property toolkit.



Definition of Subspace
A subspace S of a vector space V is a nonvoid subset of V which under the operations
+ and · of V forms a vector space in its own right.

Subspace Criterion

Let S be a subset of V such that

1. Vector~0 is in S.
2. If ~X and ~Y are in S, then ~X + ~Y is in S.
3. If ~X is in S, then c ~X is in S.

Then S is a subspace of V .

Items 2, 3 can be summarized as all linear combinations of vectors in S are again in S. In
proofs using the criterion, items 2 and 3 may be replaced by

c1 ~X + c2~Y is in S.



Subspaces are Working Sets

We call a subspaceS of a vector spaceV a working set, because the purpose of identifying
a subspace is to shrink the original data set V into a smaller data set S, customized for the
application under study.

A Key Example. Let V = R3 and let S be the plane of action of a planar kinematics
experiment, a slot car on a track. The data set D for the experiment is all 3-vectors ~v in V
collected by a data recorder. Detected by GPS and recorded by computer is the 3D position
of the slot car, which would be planar, except for bumps in the track. The original data set
D will be transformed into a new data set D1 that lies entirely in a plane. Plane geometry
computations then proceed with the Toolkit for V , on the smaller planar data set D1.
How to create D1? The ideal plane of action S is computed as a homogeneous equation
(like 2x+3y+1000z=0), the equation of a plane. Least squares is applied to data set D to
find an optimal equation for S. Altered data set D1 is created from D (and D discarded)
to artificially satisfy the plane equation. Then D1 is contained in S (D obviously was
not). The smaller storage set S replaces the larger storage set V . The customized smaller
set S is the working set for the kinematics problem.



The Kernel Theorem
Theorem 1 (Kernel Theorem)
Let V be one of the vector spaces Rn and let A be an m × n matrix. Define a
smaller set S of data items in V by the kernel equation

S = {~x : ~x in V, A~x = ~0}.

Then S is a subspace of V .
In particular, operations of addition and scalar multiplication applied to data items
in S give answers back in S, and the 8-property toolkit applies to data items in S.
Proof: Zero is in S because A~0 = ~0 for any matrix A. To apply the subspace criterion, we verify that
~z = c1~x + c2~y belongs to S, provided ~x and ~y are in S. The details:

A~z = A(c1~x + c2~y)

= A(c1~x) + A(c2~y)

= c1A~x + c2A~y

= c1~0 + c2~0 Because A~x = A~y = ~0, due to ~x, ~y in S.
= ~0 Therefore, A~z = ~0, and ~z is in S.

The proof is complete.



The Kernel Theorem in Plain Language

The Kernel Theorem says that a subspace criterion proof can be avoided by checking that
data set S, a subset of a vector space Rn, is completely described by a system of homoge-
neous linear algebraic equations.

Applying the Kernel Theorem replaces a formal proof, because the conclusion is that S is
a subspace of Rn. Details, if any, amount to showing that the defining relations for S can
be expressed as a system of homogeneous linear algebraic equations. One way to do this is
to write the relations in matrix form A~x = ~0.

Example

Let S be the data set in R3 given as the intersection of the two planes x + y + z = 0,
x + 2y − z = 0. Then S is a subspace of R3 by the Kernel Theorem. The reason:
linear homogeneous algebraic equations x+ y+ z = 0, x+2y− z = 0 completely
describe S. By the Kernel Theorem, S is a subspace of R3. Presentation details might,

alternatively, define matrix A =

1 1 1
1 2−1
0 0 0

 and verify S is the kernel of A.



Not a Subspace Theorem

Theorem 2 (Testing S not a Subspace)
Let V be an abstract vector space and assume S is a subset of V . Then S is not
a subspace of V provided one of the following holds.

(1) The vector ~0 is not in S.

(2) Some ~x and−~x are not both in S.

(3) Vector ~x + ~y is not in S for some ~x and ~y in S.

Proof: The theorem is justified from the Subspace Criterion.
1. The criterion requires ~0 is in S.
2. The criterion demands c~x is in S for all scalars c and all vectors ~x in S.
3. According to the subspace criterion, the sum of two vectors in S must be in S.



Definition of Independence and Dependence

A list of vectors ~v1, . . . , ~vk in a vector space V are said to be independent provided
every linear combination of these vectors is uniquely represented. Dependent means not
independent.
Unique representation

An equation

a1~v1 + · · ·+ ak~vk = b1~v1 + · · ·+ bk~vk

implies matching coefficients: a1 = b1, . . . , ak = bk.

Independence Test
Form the system in unknowns c1, . . . , ck

c1~v1 + · · ·+ ck~vk = ~0.

Solve for the unknowns [how to do this depends on V ]. Then the vectors are independent
if and only if the unique solution is c1 = c2 = · · · = ck = 0.



Independence test for two vectors ~v1, ~v2

In an abstract vector space V , form the equation

c1~v1 + c2~v2 = ~0.

Solve this equation for the two constants c1, c2.

Then ~v1, ~v2 are independent in V if and only if the system has unique
solution c1 = c2 = 0.

There is no algorithm for how to do this, because it depends on the vector space V
and sometimes on detailed information obtained from bursting the data packages
~v1, ~v2. If V is some Rn, then combo-swap-mult sequences apply.



Geometry and Independence

• One fixed vector is independent if and only if it is nonzero.

• Two fixed vectors are independent if and only if they form the edges of a parallelogram
of positive area.

• Three fixed vectors are independent if and only if they are the edges of a parallelepiped
of positive volume.

In an abstract vector space V , one vector [one data package] is independent if and only if
it is a nonzero vector. Two vectors [two data packages] are independent if and only if one
is not a scalar multiple of the other. There is no simple test for three vectors.

Illustration

Vectors ~v1 = cosx and ~v2 = sinx are two data packages [graphs] in the vector space
V of continuous functions. They are independent because one graph is not a scalar multiple
of the other graph.



An Illustration of the Independence Test
Two column vectors are tested for independence by forming the system of equations
c1~v1 + c2~v2 = ~0, e.g,

c1

(
−1
1

)
+ c2

(
2
1

)
=

(
0
0

)
.

This is a homogeneous system A~c = ~0 with

A =

(
−1 2
1 1

)
, ~c =

(
c1
c2

)
.

The system A~c = ~0 can be solved for ~c by combo-swap-mult methods. Because rref(A) = I, then c1 = c2 =
0, which verifies independence.
If the system A~c = ~0 is square, then det(A) 6= 0 applies to test independence.
Determinants cannot be used directly when the system is not square, e.g., consider the homogeneous system

c1

 −11
0

+ c2

 2
1
0

 =

 0
0
0

 .

It has vector-matrix form A~c = ~0 with 3× 2 matrix A, for which det(A) is undefined.



Rank Test

In the vector space Rn, the independence test leads to a system of n linear homoge-
neous equations in k variables c1, . . . , ck. The test requires solving a matrix equa-
tion A~c = ~0. The signal for independence is zero free variables, or nullity zero,
or equivalently, maximal rank. To justify the various statements, we use the relation
nullity(A) + rank(A) = k, where k is the column dimension of A.

Theorem 3 (Rank-Nullity Test)
Let ~v1, . . . , ~vk be k column vectors in Rn and let A be the augmented matrix
of these vectors. The vectors are independent if rank(A) = k and depen-
dent if rank(A) < k. The conditions are equivalent to nullity(A) = 0 and
nullity(A) > 0, respectively.



Determinant Test

In the unusual case when the system arising in the independence test can be expressed as
A~c = ~0 and A is square, then det(A) = 0 detects dependence, and det(A) 6= 0
detects independence. The reasoning is based upon the adjugate formula A−1 =
adj(A)/ det(A), valid exactly when det(A) 6= 0.

Theorem 4 (Determinant Test)
Let A be a square augmented matrix of column vectors. The column vectors are
independent if det(A) 6= 0 and dependent if det(A) = 0.



Sampling Test

Let functions f1, . . . , fn be given and let x1, . . . , xn be distinct x-sample values. Define

A =


f1(x1) f2(x1) · · · fn(x1)
f1(x2) f2(x2) · · · fn(x2)

... ... · · · ...
f1(xn) f2(xn) · · · fn(xn)

 .

Then det(A) 6= 0 implies f1, . . . , fn are independent functions.

Proof
We’ll do the proof for n = 2. Details are similar for general n. Assume c1f1 + c2f2 = 0. Then for all x,
c1f1(x) + c2f2(x) = 0. Choose x = x1 and x = x2 in this relation to get A~c = ~0, where ~c has components
c1, c2. If det(A) 6= 0, then A−1 exists, and this in turn implies ~c = A−1A~c = ~0. We conclude f1, f2 are
independent.



Wronskian Test

Let functions f1, . . . , fn be given and let x0 be a given point. Define

W =


f1(x0) f2(x0) · · · fn(x0)
f ′1(x0) f ′2(x0) · · · f ′n(x0)
... ... · · · ...
f

(n−1)
1 (x0) f

(n−1)
2 (x0) · · · f (n−1)

n (x0)

 .

Then det(W ) 6= 0 implies f1, . . . , fn are independent functions. The matrix W
is called the Wronskian matrix of f1, . . . , fn and det(W ) is called the Wronskian
determinant.

Proof
We’ll do the proof for n = 2. Details are similar for general n. Assume c1f1 + c2f2 = 0. Then for all x,
c1f1(x) + c2f2(x) = 0 and c1f

′
1(x) + c2f

′
2(x) = 0. Choose x = x0 in this relation to get W~c = ~0, where

~c has components c1, c2. If det(W ) 6= 0, then W−1 exists, and this in turn implies ~c = W−1W~c = ~0. We
conclude f1, f2 are independent.



Atoms

Definition. A base atom is one of the functions

1, eax, cos bx, sin bx, eax cos bx, eax sin bx

where b > 0. Define an atom for integers n ≥ 0 by the formula

atom = xn(base atom).

The powers 1, x, x2, . . . are atoms (multiply base atom 1 by xn). Multiples of these
powers by cos bx, sin bx are also atoms. Finally, multiplying all these atoms by eax

expands and completes the list of atoms.

Alternatively, an atom is a function with coefficient 1 obtained as the real or imaginary part of
the complex expression

xneax(cos bx + i sin bx).



Illustration

We show the powers 1, x, x2, x3 are independent atoms by applying the Wronskian Test:

W =


1 x0 x2

0 x3
0

0 1 2x0 3x2
0

0 0 2 6x0

0 0 0 6

 .

Then det(W ) = 12 6= 0 implies the functions 1, x, x2, x3 are linearly independent.



Subsets of Independent Sets are Independent

Suppose ~v1, ~v2, ~v3 make an independent set and consider the subset ~v1, ~v2. If

c1~v1 + c2~v2 = ~0

then also
c1~v1 + c2~v2 + c3~v3 = ~0

where c3 = 0. Independence of the larger set implies c1 = c2 = c3 = 0, in particular,
c1 = c2 = 0, and then ~v1, ~v2 are indpendent.

Theorem 5 (Subsets and Independence)
• A non-void subset of an independent set is also independent.

• Non-void subsets of dependent sets can be independent or dependent.



Atoms and Independence

Theorem 6 (Independence of Atoms)
Any list of distinct atoms is linearly independent.

Unique Representation
The theorem is used to extract equations from relations involving atoms. For instance:

(c1 − c2) cosx + (c1 + c3) sinx + c1 + c2 = 2 cosx + 5

implies
c1 − c2 = 2,

c1 + c3 = 0,

c1 + c2 = 5.



Atoms and Differential Equations
It is known that solutions of linear constant coefficient differential equations of order n
and also systems of linear differential equations with constant coefficients have a general
solution which is a linear combination of atoms.

• The harmonic oscillator y′′ + b2y = 0 has general solution y(x) = c1 cos bx +
c2 sin bx. This is a linear combination of the two atoms cos bx, sin bx.

• The third order equation y′′′ + y′ = 0 has general solution y(x) = c1 cosx +
c2 sinx + c3. The solution is a linear combination of the independent atoms cosx,
sinx, 1.

• The linear dynamical system x′(t) = y(t), y′(t) = −x(t) has general solution
x(t) = c1 cos t + c2 sin t, y(t) = −c1 sin t + c2 cos t, each of which is a
linear combination of the independent atoms cos t, sin t.


