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1 Introduction

Gilbert Strang provides an introduction to the analysisle€tical circuits in his
book Introduction to Applied MathematicHis presentation aims at having the
theory as close as possible to his general constructioniplas for mathematical
models which occur throughout the above mentioned books fmbiation might
be rather unusual for an electrical engineer working intelecircuit analysis.
The following explanations are intended to put the deroraiinto the enginnering
context.

2 The Principles

The numerical simulation of electric networks is closellated to the network
modeling. A well established approach is the descriptiomthef network by a
graph with branches and nodes. Each branch representcaiced®ement whose
terminals are coupled together at the nodes. (See the saxaieple in Figure 1.)
The simplest network elements are fully described by aiogldietween a single
branch current and the respective branch voltage (e.@stoes capacitors, induc-
tors, (independent) voltage and current sources). Theaibesy current-voltage
relations are called characteristic equations.

The state of the network at any given time is now completelcdbed by
all branch voltages, branch currents, and node potentifte node potentials
are only defined up to a constant. Therefore, one node isreskidpe voltage
(potential) OV. This node is called the mass (or, ground)enoflhe other node
potentials are given with respect to this reference nods by being unique).

In order to complete the network model, the topology of thremants (i.e.,
their mutual interconnections) has to be taken into accoAsguming the electri-
cal connections between circuit elements to be ideally gotidg and the nodes
to be ideal, the topology can be described by Kirchhoff’sdaw
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Figure 1: A sample circuit: Schematic of a low-pass filter



Thus, the network modeling consists of two steps:

1. Describe the network elements.

2. Apply Kirchhoff’s laws.

3 Network elements

In order to make the presentation as simple as possible] bualy consider un-
controlled, two-terminal elements. Moreover, the eleraavitl be assumed to be
linear. The respective branch voltage will be denoted hile the branch cur-
rent isi. Note that both can be positive or negative depending ontileatation
of the branch.

3.1 Passive Elements

In network modeling one distinguishes three different sypepassive elements:
resistors, capacitors, and inductors. Their characieregjuations can be de-
scribed as follows:

Resistors limit, or resist, the flow of electrical current, followinbé lawv = Ri.
R is the resistance value. Sometimes this relation is wrigteh = Gv
whereG = 1/R is called conductivity.

Capacitors store energy in an electrostatic field following the law Cv where
q is the electric charge(' is the capacitance value. The voltage-current
characteristics is given by= < ¢ = C'% (if C'is constant).

Inductors store energy in an electromagnetic field following the law= L
where® is the magnetic flux.L is the self-inductance value. The voltage-
current characteristic is given by= £& = L4 (if L is constant).

3.2 Independent Sources

Again for the sake of simplicity, independent sources walltbe only active ele-
ments we consider. The generalization to controlled elésierstraightforward.

Voltage source The current-voltage characteristic is givendby- E with E be-
ing the strength of the source. Note thatloes not depend on the branch
currents.

Current source The current-voltage characteristic is giveriby [ with I being
the strength of the source. Note thabes not depend on the branch voltage
V.



4 Kirchhoff’'s Laws

The electrical behavior of the network is completely ddseli by Kirchhoff’s
laws.

Considering one node with branch currents. . ., i, entering this node we
may describe Kirchhoff’'s current law (KCL) ds+ - - - + i; = 0, that means, the
sum of all branch currents entering a node equals zero.

If we consider a loop with the branch voltages. . ., v,,, then we may for-
mulate Kirchhoff’s voltage law (KVL) as; + - - - + v, = 0, that means, the sum
of all branch voltages in a loop equals zero.

In a practical network there are very many nodes and loopsrdear to de-
scribe the topology of the circuit, one must write down KCldd€\VL for each
of them. It becomes obvious that ones needs a systematiconderite all these
equations for a given network. Fortunately, there is a véegant description
of all these individual equations. The magic happens if sesithe (reduced)
incidence matrix4 of the circuit.

Assume that we have a circuit with+ 1 nodes and branches. Number the
nodes and branches accordingly. The ground node is omidezl hFor every
branch, define an orientation, that is, one node of the branassumed to be the
“starting” node, the other one is the “end” node. The redlicecidence matrix
describes which nodes belong to which branch:

1, if branch | has start node k
ap = < —1, if branch | has end node k.
0, else
Itis now convenientto collect all branch currents into ogeter i = i, is, . . ., i)'

Then, the compact notation of KCL is
Ai=0.

The incidence matrix allows, additionally, a simple dgsttoin of the relation be-
tween node potentials and branch voltages of the netwotk=f[v,, va, ..., v)
is the vector of all branch voltages and= [e;, ey, . .., e,] denotes the vector of
all node potentials (excluding the reference (mass) nalei), the relation

v=Ae

is satisfied.

1The notion “reduced” comes from the fact that the ground risdft out.

2By convention, all our vectors are assumed to be column v&dio order to come as close as
possible to the MATLAB notation, | will use the apostrophedenoting the transpose of a matrix
or vector:A” = A’. This is valid as long adl is a real matrix.
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5 Network Analysis

As introduced previously, letbe the vector of all branch currentsbe the vector

of all branch voltages, ane be the vector of all node potentials. The first step
consists of writing down the network equations and the dtaritic equations of
all network elements as described in the previous subsectithis gives rise to a
system of dimensiob + n for the unknowns, v, e. The approach leading to this
system is called sparse tableau analysis.

The so-callednodified nodal analysidMNA) requires a much smaller num-
ber of unknowns. In this case, one replaces the branch d¢aroérall current
defining elements (conductors, resistpirrent sources) by their characteristic
equation, and all branch voltages by node voltages. Forzeooent description
of this approach, it is appropriate to decompose the incieenatrix according
to the element types of their branches. By definition of tleed@nce matrix, ev-
ery column ofA corresponds to one branch. We assume that the branches are
enumerated in the following order: first all resistive briaes, then all capacitive
branches, then all inductive branches, then all voltageceduranches, and finally
all current source branches. Thdrcan be decomposed into block form:

A= [Ar,Ac, AL, Ay, Afl,

where the index stands for resistive, capacitive, indegtreltage source, and cur-
rent source branches, respectively. Using the charaiitegguations as indicated
above, we obtain the following system:

d
ACECA/Ce—l-ARGA}ze—FALiL—FAviv = —A/l,

d
—LiL—A/Le =0

dt
ve = E.

Here, we have used the following denotations:

e iy is the vector of all branch currents through voltage sources
e {; is the vector of all branch currents of inductive branches.

¢ [/ is the vector of the values of all current sources.

e F is the vector of the values of all voltage sources.

e ('is the diagonal matrix containing all capacities.

Svia conductance formulation!



e (G is the diagonal matrix containing all conductances (ineeisf the resis-
tances).

e [ is the diagonal matrix containing all inductivities.

The unknowns in the classical MNA system are the node vadtagihe currents

through voltage sources, and the currents through inductefs Thus, the num-

ber of unknowns has reduced drastically. In matrix notatitbe system can be
written down as

ACCA’C 0 0 d € ARGAIR AL AV € —A[]
0 L 0| lip|+| —4 0 0 ip | =1 0
0 00 iy A, 0 0 iy E

This system consists of differential equations @bandi;) and additional equa-
tions which do not contain any derivatives of the unknownctions. Such a
system is called a differential-algebraic equation. I pihy a key role not only
in circuit simulation.

5.1 DC Analysis

The abbreviation DC stands for “Direct Current”. When perfing a DC analysis
we assume that the network consists only of resistors, miarel voltage sources.
Capacitors and inductors have to be replaced by their DG/algunts: a capacitor
is a perfect insulator while an inductor is a perfect condudn order to simplify
the notation assume that the network does not contain amcitags or inductors.
Therefore, the matrix in front of the derivatives is a zerdnmaHence the MNA
equations reduce to

ARGA/R AV (& o —A[]
A, 0 v || E |

This is a linear system of equations. Under some assumptioritbe network
topology, the system matrix is nonsingular such that théesy$as a unique so-
lution.

Example Consider the electrical circuit given in Figure 2. Accoglio our con-
vention, we will count the resistive branches first, thenubléage source branch,
and finally the current source branch. Let branch nunilberthe branch through
resistorR;, fori = 1,2, 3,4. Branch 5 is the voltage source, branch 6 consists of
the current source. This provides us with the incidenceioesr

“More precisely, sinceél - C A, is a singular matrix, not all node voltages are really deteeah
by differential equations. This will need some more dethiteestigation during the course.
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Figure 2: A resistive network

+1 41 0 0 0 0
Ap=1 0 =1 +1 +1 |, Av=]| 0|, A =] -1],
0 0 -1 0 +1 0

Let for simplicity all resistances being equalltQ. The resulting system is then

2 -1 00][e 0
1 3 10| |e | |-
0 -1 2 1||e || 0
0 0 1 0] | 9

5.2 AC Analysis

The abbreviation AC stands for “Alternating current”. Fbetpurposes of this
project, we will assume that all sources are harmonic and the/same frequency
f, 1.e., they follow the relations

v(t) = Vsinwt,i(t) = I sinwt

wherew = 27 f. Instead of using the amplitudes it is common to work furtbrer
with the effective values

V=V/V2,I=1/V2.
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Under these assumptions it is very convenient to use conplextities. In-
stead of the trigopnometric functions, complex exponesitiaé applied. By using
Moivre’s law, the time-dependent voltages and currentskEardentified as the
real (or imaginary) part of an exponentidl’ scaled by and I, respectively.
Since J

E6j'wt _ jwejwt7
the differential law describing the capacitors and ressstieespectively, reduce to
simple algebraic relations

v = Zi,

which formally resemble Ohm’s law for resistors. The compquivalent of the
resistance is called impedance. The systematic use ofghigsaence in analyz-
ing RLC networks is callegw-method.

The value of the impedance is easily computed from the teahparameters:

Resistor 7 = R

1

Capacitor 7 = o0

Inductor Z = jwL

Let us now come back to the MNA equations. Inductive and déipabdranches
can now be handled in the same way as resistive branches tieer@pedance
replaces the resistance. The inverses of the impedahees called admittances
Y. LetYg, Ye, Y., denote diagonal matrices which contain the admittanceseof t
resistive, capacitive and inductive branches, respdgtiv€hen it holds

ARYRAQQ—FAC}/CAIC—'—ALYLAIL AV € . —A[I
Al 0 v || E |

The vector of voltages and currents now contain the effectatues.

Example Consider the RLC network of Figure 3. Let the branches beretde
according to our convention. Then we obtain the followingdience matrices:

+1 0] +1 0 0 0
Ap = 0 +1 |, Ac=1| -1 |, A= +1 | Ay = 0,4 =1 —1
0 0 0 ~1 +1 0
and 1R
_[1/Ry, 0 ey o
Yr = 0 /R, Yo = [jwC], Y, =[1/(jwlL)].

SIn particular,Yr = G.
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Figure 3: A simple RLC circuit

5.3 Computing Currents, Or: How Do We Get Ampere Me-
ters?

It remains to resolve a problem which is connected with tloperties of MNA.
There are only some currents available for output. Nevirsisethe state of the
network can be derived completely from the computed quastitin particular,
we might be interested in knowing the value of the currenbulgh a resistive
branch. It is not immediately available. But there is a sirpick: put a voltage
source with value of OV in series with the resistor! This agk source does not
change anything in the network. On the other hand, we intteda device where
the current is available. According to KCL, the current thigh the voltage source
is the same as that through the resistor. Hence, voltageeowith OV are our
ampere meters.

6 The Connection to Strang’s Book

How does the above calculus fit into Strang’s book? Strang asmtation which
is adapted to the general modelling principles he introdut® our short survey,
we used the notation which is commonly used in electricaivagt simulation.

There is an easy translation available. One major diffexesmithe convention for
the incidence matrices. Compared to Strang, we used aaetiffsign conven-



tion and a “transposed” description of the directed graphis Gives rise to the
following table:

| Strang| here |

T (&

(& VR
Y 1

C; G
A | A,

Another difference is the handling of the independent sesréVhile we use
the systematic approach by incidence matri¢esand A;, Strang eliminates them
immediately. Therefore, there is no need to have theseancel matrices.
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