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1 Introduction

Gilbert Strang provides an introduction to the analysis of electrical circuits in his
book Introduction to Applied Mathematics. His presentation aims at having the
theory as close as possible to his general construction principles for mathematical
models which occur throughout the above mentioned book. This notation might
be rather unusual for an electrical engineer working in electric circuit analysis.
The following explanations are intended to put the derivations into the enginnering
context.

2 The Principles

The numerical simulation of electric networks is closely related to the network
modeling. A well established approach is the description ofthe network by a
graph with branches and nodes. Each branch represents an electric element whose
terminals are coupled together at the nodes. (See the simpleexample in Figure 1.)
The simplest network elements are fully described by a relation between a single
branch current and the respective branch voltage (e.g., resistors, capacitors, induc-
tors, (independent) voltage and current sources). The describing current-voltage
relations are called characteristic equations.

The state of the network at any given time is now completely described by
all branch voltages, branch currents, and node potentials.The node potentials
are only defined up to a constant. Therefore, one node is assigned the voltage
(potential) 0V. This node is called the mass (or, ground) node. The other node
potentials are given with respect to this reference node (this way being unique).

In order to complete the network model, the topology of the elements (i.e.,
their mutual interconnections) has to be taken into account. Assuming the electri-
cal connections between circuit elements to be ideally conducting and the nodes
to be ideal, the topology can be described by Kirchhoff’s laws.
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Figure 1: A sample circuit: Schematic of a low-pass filter
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Thus, the network modeling consists of two steps:

1. Describe the network elements.

2. Apply Kirchhoff’s laws.

3 Network elements

In order to make the presentation as simple as possible, I will only consider un-
controlled, two-terminal elements. Moreover, the elements will be assumed to be
linear. The respective branch voltage will be denoted byv while the branch cur-
rent isi. Note that both can be positive or negative depending on the orientation
of the branch.

3.1 Passive Elements

In network modeling one distinguishes three different types of passive elements:
resistors, capacitors, and inductors. Their characteristic equations can be de-
scribed as follows:

Resistors limit, or resist, the flow of electrical current, following the lawv = Ri.
R is the resistance value. Sometimes this relation is writtenas i = Gv
whereG = 1/R is called conductivity.

Capacitors store energy in an electrostatic field following the lawq = Cv where
q is the electric charge.C is the capacitance value. The voltage-current
characteristics is given byi = d

dt
q = C dv

dt
(if C is constant).

Inductors store energy in an electromagnetic field following the lawΦ = Li
whereΦ is the magnetic flux.L is the self-inductance value. The voltage-
current characteristic is given byv = d

dt
Φ = Ldi

dt
(if L is constant).

3.2 Independent Sources

Again for the sake of simplicity, independent sources will be the only active ele-
ments we consider. The generalization to controlled elements is straightforward.

Voltage source The current-voltage characteristic is given byv = E with E be-
ing the strength of the source. Note thatv does not depend on the branch
currenti.

Current source The current-voltage characteristic is given byi = I with I being
the strength of the source. Note thati does not depend on the branch voltage
v.
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4 Kirchhoff’s Laws

The electrical behavior of the network is completely described by Kirchhoff’s
laws.

Considering one node with branch currentsi1, . . . , il entering this node we
may describe Kirchhoff’s current law (KCL) asi1 + · · · + il = 0, that means, the
sum of all branch currents entering a node equals zero.

If we consider a loop with the branch voltagesv1, . . . , vm, then we may for-
mulate Kirchhoff’s voltage law (KVL) asv1 + · · ·+ vm = 0, that means, the sum
of all branch voltages in a loop equals zero.

In a practical network there are very many nodes and loops. Inorder to de-
scribe the topology of the circuit, one must write down KCL and KVL for each
of them. It becomes obvious that ones needs a systematic way to derive all these
equations for a given network. Fortunately, there is a very elegant description
of all these individual equations. The magic happens if one uses the (reduced)
incidence matrixA of the circuit.

Assume that we have a circuit withn + 1 nodes andb branches. Number the
nodes and branches accordingly. The ground node is omitted here. For every
branch, define an orientation, that is, one node of the branchis assumed to be the
“starting” node, the other one is the “end” node. The reduced1 incidence matrix
describes which nodes belong to which branch:

akl =







1, if branch l has start node k
−1, if branch l has end node k

0, else
.

It is now convenient to collect all branch currents into one vector2 i = [i1, i2, . . . , ib]
′.

Then, the compact notation of KCL is

Ai = 0.

The incidence matrix allows, additionally, a simple description of the relation be-
tween node potentials and branch voltages of the network. Ifv = [v1, v2, . . . , vb]

′

is the vector of all branch voltages ande = [e1, e2, . . . , en]′ denotes the vector of
all node potentials (excluding the reference (mass) node),then the relation

v = A′e

is satisfied.
1The notion “reduced” comes from the fact that the ground nodeis left out.
2By convention, all our vectors are assumed to be column vectors. In order to come as close as

possible to the MATLAB notation, I will use the apostrophe for denoting the transpose of a matrix
or vector:AT

= A′. This is valid as long asA is a real matrix.
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5 Network Analysis

As introduced previously, leti be the vector of all branch currents,v be the vector
of all branch voltages, ande be the vector of all node potentials. The first step
consists of writing down the network equations and the characteristic equations of
all network elements as described in the previous subsections. This gives rise to a
system of dimension2b+n for the unknownsi, v, e. The approach leading to this
system is called sparse tableau analysis.

The so-calledmodified nodal analysis(MNA) requires a much smaller num-
ber of unknowns. In this case, one replaces the branch currents of all current
defining elements (conductors, resistors3, current sources) by their characteristic
equation, and all branch voltages by node voltages. For a convenient description
of this approach, it is appropriate to decompose the incidence matrix according
to the element types of their branches. By definition of the incidence matrix, ev-
ery column ofA corresponds to one branch. We assume that the branches are
enumerated in the following order: first all resistive branches, then all capacitive
branches, then all inductive branches, then all voltage source branches, and finally
all current source branches. ThenA can be decomposed into block form:

A = [AR, AC , AL, AV , AI ],

where the index stands for resistive, capacitive, inductive, voltage source, and cur-
rent source branches, respectively. Using the characteristic equations as indicated
above, we obtain the following system:

AC

d

dt
CA′

Ce + ARGA′

Re + ALiL + AV iV = −AII,

d

dt
LiL − A′

Le = 0,

A′

V e = E.

Here, we have used the following denotations:

• iV is the vector of all branch currents through voltage sources.

• iL is the vector of all branch currents of inductive branches.

• I is the vector of the values of all current sources.

• E is the vector of the values of all voltage sources.

• C is the diagonal matrix containing all capacities.

3via conductance formulation!
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• G is the diagonal matrix containing all conductances (inverses of the resis-
tances).

• L is the diagonal matrix containing all inductivities.

The unknowns in the classical MNA system are the node voltages e, the currents
through voltage sourcesiV , and the currents through inductorsiL. Thus, the num-
ber of unknowns has reduced drastically. In matrix notation, the system can be
written down as




ACCA′

C 0 0
0 L 0
0 0 0





d

dt





e
iL
iV



+





ARGA′

R AL AV

−A′

L 0 0
A′

V 0 0









e
iL
iV



 =





−AII
0
E



 .

This system consists of differential equations (fore4 andiL) and additional equa-
tions which do not contain any derivatives of the unknown functions. Such a
system is called a differential-algebraic equation. It will play a key role not only
in circuit simulation.

5.1 DC Analysis

The abbreviation DC stands for “Direct Current”. When performing a DC analysis
we assume that the network consists only of resistors, current and voltage sources.
Capacitors and inductors have to be replaced by their DC equivalents: a capacitor
is a perfect insulator while an inductor is a perfect conductor. In order to simplify
the notation assume that the network does not contain any capacitors or inductors.
Therefore, the matrix in front of the derivatives is a zero matrix. Hence the MNA
equations reduce to

[

ARGA′

R AV

A′

V 0

] [

e
iV

]

=

[

−AII
E

]

.

This is a linear system of equations. Under some assumptionson the network
topology, the system matrix is nonsingular such that the system has a unique so-
lution.

Example Consider the electrical circuit given in Figure 2. According to our con-
vention, we will count the resistive branches first, then thevoltage source branch,
and finally the current source branch. Let branch numberi be the branch through
resistorRi, for i = 1, 2, 3, 4. Branch 5 is the voltage source, branch 6 consists of
the current source. This provides us with the incidence matrices

4More precisely, sinceACCA
′

C
is a singular matrix, not all node voltages are really determined

by differential equations. This will need some more detailed investigation during the course.
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Figure 2: A resistive network

AR =





+1 +1 0 0
0 −1 +1 +1
0 0 −1 0



 , AV =





0
0

+1



 , AI =





0
−1

0



 ,

Let for simplicity all resistances being equal to1Ω. The resulting system is then








2 −1 0 0
−1 3 −1 0

0 −1 2 1
0 0 1 0

















e1

e2

e3

iV









=









0
−1

0
9









.

5.2 AC Analysis

The abbreviation AC stands for “Alternating current”. For the purposes of this
project, we will assume that all sources are harmonic and have the same frequency
f , i.e., they follow the relations

v(t) = V̂ sin ωt, i(t) = Î sin ωt

whereω = 2πf . Instead of using the amplitudes it is common to work furtheron
with the effective values

V = V̂ /
√

2, I = Î/
√

2.
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Under these assumptions it is very convenient to use complexquantities. In-
stead of the trigonometric functions, complex exponentials are applied. By using
Moivre’s law, the time-dependent voltages and currents canbe identified as the
real (or imaginary) part of an exponentialejωt scaled byV̂ and Î, respectively.
Since

d

dt
ejωt = jωejωt,

the differential law describing the capacitors and resistors, respectively, reduce to
simple algebraic relations

v = Zi,

which formally resemble Ohm’s law for resistors. The complex equivalent of the
resistance is called impedance. The systematic use of this equivalence in analyz-
ing RLC networks is calledjω-method.

The value of the impedance is easily computed from the technical parameters:

Resistor Z = R

Capacitor Z = 1

jωC

Inductor Z = jωL

Let us now come back to the MNA equations. Inductive and capacitive branches
can now be handled in the same way as resistive branches wherethe impedance
replaces the resistance. The inverses of the impedancesZ are called admittances
Y . Let YR, YC, YL denote diagonal matrices which contain the admittances of the
resistive, capacitive and inductive branches, respectively.5 Then it holds

[

ARYRA′

R + ACYCA′

C + ALYLA′

L AV

A′

V 0

] [

e
iV

]

=

[

−AII
E

]

.

The vector of voltages and currents now contain the effective values.

Example Consider the RLC network of Figure 3. Let the branches be ordered
according to our convention. Then we obtain the following incidence matrices:

AR =





+1 0
0 +1
0 0



 , AC =





+1
−1

0



 , AL =





0
+1
−1



 , AV =





0
0

+1



 , AI =





0
−1

0



 ,

and

YR =

[

1/R1 0
0 1/R4

]

, YC = [jωC] , YL = [1/(jωL)] .

5In particular,YR = G.
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Figure 3: A simple RLC circuit

5.3 Computing Currents, Or: How Do We Get Ampère Me-
ters?

It remains to resolve a problem which is connected with the properties of MNA.
There are only some currents available for output. Nevertheless, the state of the
network can be derived completely from the computed quantities. In particular,
we might be interested in knowing the value of the current through a resistive
branch. It is not immediately available. But there is a simple trick: put a voltage
source with value of 0V in series with the resistor! This voltage source does not
change anything in the network. On the other hand, we introduced a device where
the current is available. According to KCL, the current through the voltage source
is the same as that through the resistor. Hence, voltage sources with 0V are our
ampere meters.

6 The Connection to Strang’s Book

How does the above calculus fit into Strang’s book? Strang uses a notation which
is adapted to the general modelling principles he introduces. In our short survey,
we used the notation which is commonly used in electrical network simulation.
There is an easy translation available. One major difference is the convention for
the incidence matrices. Compared to Strang, we used a different sign conven-
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tion and a “transposed” description of the directed graph. This gives rise to the
following table:

Strang here

x e
e vR

y i
ci G
A −A′

R

Another difference is the handling of the independent sources. While we use
the systematic approach by incidence matricesAV andAI , Strang eliminates them
immediately. Therefore, there is no need to have these incidence matrices.
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