
SVD and DCT Image Compression

Connor Kuhn

April 28, 2016

1 Introduction

Digital images proliferate through every aspect of our live today. This means
that being able to compress them efficiently is very important. Two linear
algebra techniques, low-rank approximation from a single-value decomposition
and discrete cosine transformations, for compressing an image will be explored
today.

A gray-scale image can stored as a matrix, with each entry representing a
pixel in the image. Each entry is a value from 0 to 255 that represents the
amount of black and white in that pixel. A 255 value represents 100% white
and a 0 value represents 100% black. If only whole numbers are used, then there
are 256 possible values for a given pixel. This is known as an 8-bit image.

The Python programming language will be used in order to explore the two
compression techniques above. A 512px by 512px, 8-bit, grayscale image that
is included in the scipy Python package. The original image can be seen below.

1

2 SVD Compression

Image compression can be done using a low-rank approximation on the single-
value decomposition. The single-value composition takes the form

D = UΣV T

where the columns of U and V are the left and right singular vectors, respec-
tively, and Σ) has diagonal entries that are the singular values of D. That
is

Σ = diag(σ1, ..., σm)

The low-rank approximation is then done by zeroing out the values in Σ
where r > k, where r is the row index and k is a real number, and 0 <= k <=
rank(Σ). This can be viewed as Σk = Σ − diag(0, ..., σk, ..., σm). So to find the
low-rank approximation for k calculate

Dk = U(Σ − Σk)V t

An image can be compressed using the above formula. The lower the value
of k, the lower the quality of the compressed image will be and the smaller the
size of the image will be. Conversely, the higher the value of k as it approaches
the rank of the image matrix, the higher the quality of the image will be and
the larger the size will be.

This algorithm was applied to the image above, for k = 5, ..., 105, k = k+25,
to generate a scale of images from high compression to low compression. The
image below contains the resulting approximations, i.e k = 5, k = 30, k =
55, k = 80, k = 105 plus the original appended last.

As can be seen in the above image, it is difficult to tell a difference between
the last two images. They are close to the same quality for normal viewing
sizes. If the image is magnified then it is far easier to see a difference in quality.
This led me to determine that k = 80 was the minimum number of values that
must be kept for acceptable image quality for SVD low-rank approximation.
The compression ratio for this k value is 2.8%, which is not a high amount of
compression.

2

3 DCT Compression

Compression of an image can also be done via a discrete cosine transformation.
This algorithm is used in some of the most widely used image and audio formats,
like JPEG and MP3 [?, wikipedia] A DCT transforms an image from the spatial
domain to the frequency domain, separating the parts of the image into areas
of differing importance. It is similar to a discrete Fourier transformation.

The process to get the approximation to the process used for the low-rank
approximation. First a DCT is found by the following equation [2].

F (u, v) =

(
2

N

) 1
2
(

2

M

) 1
2
N−1∑
i=0

M−1∑
j=0

Λ(i, j)cos
[πu

2N
(2i+ 1)

]
cos
[πv

2M
(2j + 1)

]
f(i, j)

(1)
where

Λ(i)

{ 1√
2

forε = 0

1 otherwise
(2)

Once a DCT D is found, an approximation is found by zeroing out the
values in D where r > k, where r is the row index and k is a real number, and
0 <= k <= rank(D). This can be viewed as Dk = D − diag(0, ..., Dk, ..., Dm).
So to find the low-rank approximation for k calculate

F−1(D −Dk)

3

As before, a lower value of k represents higher compression and lower quality,
while a higher value of k indicates a lower compression but higher quality.

This was applied to the original image for k = 25, ..., 225, k = k+ 50 to gen-
erate a series of approximations. These images are displayed in the below scale,
with the original appended last. As can be seen there is not much difference
between the last two images. I have concluded that k = 175 is the least amount
of value that must be kept for an acceptable image quality. This value has a
compression ratio of 16.3% which is significantly higher compression than that
of the SVD compression with similar image quality. This can be seen in the
graph below.

4 Conclusion

One of the more interesting parts of this was comparing how the decrease in
image quality manifested itself between the two image compression techniques.

4

There is a clear difference in how the low quality SVD compressed images are
distorted versus how the low quality DCT compressed images were distorted.

Another interesting difference was how DCT had a much higher compression
ratio than the SVD compression, with the result images having similar image
quality. The final compression ratio for DCT was about 8 times higher. The
graph below shows a comparison between SVD and DCT for the various k values
tested.

While the techniques for this project were explored using a grayscale image,
all of the above could easily be applied to a RGB or RGBA image to further
explore the topic. It would be interesting to see how the additional dimension
of color affects the compression algorithms and compression ratios.

5

References

[1] Wikipedia, Discrete Cosine Transformation., https://en.wikipedia.org/
wiki/Discrete_cosine_transform

[2] Dave Marshall, The Discrete Cosine Transform (DCT), https://www.cs.
cf.ac.uk/Dave/Multimedia/node231.html

6

https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://www.cs.cf.ac.uk/Dave/Multimedia/node231.html
https://www.cs.cf.ac.uk/Dave/Multimedia/node231.html

	Introduction
	SVD Compression
	DCT Compression
	Conclusion

