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The Spectral Differences in Sounds and Harmonics 

 

 Through chemical and biological processes, we, as humans, can detect the movement and 

vibrations of molecules through the air and interpret them as sound. That dog barking in the 

distance, the light whistle of the wind through the window, the rich sound of a cello playing a 

long, deep note or a friend laughing in the other room. Sound is all around us. This continuous 

array of noise is often seen as disordered, muddled, and random. However, just as snowflakes are 

constructed with delicate patterns of ice crystals, sound is very formulaic and structured in its 

makeup. And as such, through linear algebra, we are able to measure it and compare it. 

 A sound spectrum is a representation of the amount of molecular vibration that occurs at 

each frequency over time. Each sound has its own unique spectrum and frequency. For example, 

the sound of Middle C on a standard grand piano vibrates at 261.6 Hertz (cycles per second). A0 

is 27.50 Hertz. The high pitch ringing from an old TV is about 15 kiloHertz, lying just within the 

average adult human’s range of hearing (20 Hz – 18 kHz).  The more cycles per second, or rather 

the faster the molecular vibration that occurs as a result of the hammer hitting the piano string, 

the higher the pitch of the sound is. Thinner strings are able to vibrate faster than thicker ones, 

thus producing more vibration back and forth. The intensity, or loudness of a sound is measured 

in decibels (dB) and is relative to the amplitude of the sound wave. 
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 Our ears use a complex process to detect these signals. After the sound waves enter our 

ear canal, they strike the tympanic membrane or ear drum within the middle ear, causing it to 

vibrate. These vibrations are transferred to the cochlea, a 3 cm long tube filled with liquid in the 

inner ear. The cochlea contains the basilar membrane, which supports over 12,000 sensory cells 

which make up the cochlear nerve. This nerve is designed to act as a sound spectrum analyzer. 

When it detects sounds of a higher frequency, the cells near the front of the basilar membrane 

resonate, and as the frequency gets lower and lower, the corresponding cells that get triggered 

are deeper and deeper within the ear. The basilar membrane then encodes these vibrations into 

electrical impulses called action potentials. “For example, a 200 hertz sound wave can be 

represented by a neuron producing 200 action potentials per second.” - Steven W. Smith, Ph.D. 

This is known as the volley principle. The electrical impulses are sent to the brain and converted 

to the sound we hear. Our ears are built to react to the changes in amplitude and spectral 

densities. But measuring the spectral differences and complexities heard from a human ear is 

complicated. Mathematically, it is more based on the spectral representation of the two signals 

and measuring their differences. To better realize what this means, we must employ the use of 

Fourier analysis. 

 Fourier Analysis is the study of the way complicated functions, namely Fourier series, 

can be represented by sums of trigonometric functions. Named after Joseph Fourier, Fourier 

series are wave-like functions, such as sound spectra, that can be estimated as the sum of 

multiple sine waves. The function is called a trigonometric polynomial and it is connected to 

other functions within the basis so long 

that for any n ≥ 1, the set of polynomial 

expressions in the function is 
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orthogonal with respect to the basis’ inner product, shown in Figure 1 below. This inner product 

multiplied by 
1

𝜋
 gives us a function that is orthonormal on the interval [-π, π]. We use this to 

solve the vector space of functions that make up the Fourier decomposition. Finally, we are able 

to express this continuous functions as a Fourier Series: 𝑓(𝑥) = 𝑎 +  ∑ 𝑏𝑛 cos 𝑛𝑥 +∞
𝑛=1

 ∑ 𝑐𝑛 sin 𝑛𝑥 ∞
𝑛=1   Fourier Analysis plays a big role in understanding the spectral density, and the 

level of energy emitted by the sound. 

To better illustrate the concept of Fourier Analysis, I have devised a small experiment. I 

have a friend that is a music producer, and he swears by the fact that natural instruments sound 

better, clearer, and purer than a computer generated sound. As I established before, human ears 

are very complex and are able to pick up and distinguish very slight differences in sound, so I do 

believe he may have a valid point. I figured that there had to be some sort of difference in the 

spectral density and amplitude of a computer generated sound and a real sound. But I want to 

take that hypothesis to the next level and analyze the spectral patterns of a real instrument’s note 

(in this experiment, we will use Middle C) and compare it with the 

same note of the same type of instrument, only this time it’s 

generated by a computer application. I want to see whether the 

makeup and pattern of one spectrum has a unique mathematical 

pattern than the other and if this difference can be quantified. 

 As you can see in Figure 2, the spectrum of both notes are 

very different from each other. The real trumpet has much more 

variation and a disturbance in energy across the spectrum, while 

the computer generated sound is much more uniform and 
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monotone. One could argue that the fluctuations in energy is due to the slight palpitations or 

imperfections that comes from a human blowing into an instrument. And while that may be able 

to partially explain the wider changes in amplitude, it would do us well to examine the waves at 

a much closer magnification. See Figure 3 below. The waves appear to be strikingly similar. The 

major difference being the tiny fluctuations in the real 

trumpet’s sound. The computer generated trumpet 

follows a much more algorithmic and mathematical 

pattern, as is expected. But both waves are generally 

similar. The difference is subtle, but through this 

experiment we have proved that the energy spectra 

are indeed different. 

  The point we can conclude from this is that 

computer generated sounds seem to be pure 

harmonic. The frequency, amplitude, and spectral 

density are all calculated and limited to a simple harmonic formula. And while natural sounds are 

similar, they appear to be superpositions of several harmonics. Using the Fourier series we 

derived earlier, we are able to calculate the inner product spaces of all the harmonics that are 

orthonormal within the interval    [-π, π], which can help quantify the harmonics with respect to a 

more familiar spectrum. But Linear Algebra can offer us an even clearer meaning. The answer 

lies in the application of a difference equation. As we have established before, sound is just a 

signal. And signals can be better analyzed and compared within their orthonormal family. 

Similar to the Fourier series, mentioned before, in order to find out if a signal has an orthonormal 

family, we must determine if it is linearly independent. In order to do that, the signal must satisfy 
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the equation c1uk + c2vk + c3wk = 0 for all k. In other words, c1 = c2 = c3 =0. For a set of three 

signals {uk}, {vk}, and {wk} we can generate the coefficient matrix: 

 

This is also known as a Casorati matrix. It was developed by Felice Casorati and is a very useful 

tool in studying and analyzing linear difference equations. This, along with generating a Fourier 

Series from the spectral information of a sound helps us visualize and understand the differences 

in two harmonics. Whether it be a comparison between a computer generated sound and a real 

one, such as the experiment I conducted, or the fundamental variations of two entirely different 

sounds, they can all be measured and quantified. 

 After studying and analyzing energy spectra and differences between them by working 

through the linear systems provided by Linear Algebra, one gains a much deeper understanding 

of the concept and mathematics that are at work within a simple sound. They may seem chaotic 

and unorderly, but every sound and signal is a formula that can be analyzed and compared. And 

through the experiments I’ve performed, I have demonstrated the differences and similarities 

within two seemingly identical sounds. With the help of Linear Algebra and modern 

computational tools, there will only be more progress in this fascinating area. 
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