
Text Reference: Section 2.5 and Exercise 2.5-31

Lab 4: Equilibrium Temperature Distributions

The purpose of this Lab is to discuss  the equilibrium temperature of a thin plate, a problem which 
leads to a system of linear equations. Methods for solving these equations will be compared, and some 
methods will be shown to be more efficient than others.

Consider a thin square plate whose faces are insulated from heat.  Suppose that the temperature along 
the four edges of the plate is known, and further suppose that those temperatures are held constant.  
After some time has passed, the temperature inside the plate will reach an equilibrium.  Finding this 
equilibrium temperature distribution at the points on the plate is desirable, given only the temperature
data from the edges of the plate.  Unfortunately, the exact determination of this temperature 
distribution is a difficult problem.  An approximation to the exact distribution may be found by 
discretizing the problem; that is, by only considering a few points on the plate and approximating the 
temperature at those points.

A property from thermodynamics helps with the discretization of the problem.  The property says that 
if equilibrium has been achieved, then the temperature at a point is the average value of the 
temperature at surrounding points. 

Sample modeling for a rectangular dam and corresponding calculations with the Mean Value Property 
can be found here: 
http://www.math.utah.edu/~gustafso/s2015/2250/quiz/sampleQuizzes/quiz7/quiz7-sample.pdf

The Mean Value Property:

 If a plate has reached thermal equilibrium, and P is a point on the plate, and C is a circle centered 
at P fully contained in the plate, then the temperature at P is the average value of the temperature 
function over C. See Figure 1 for a picture of this situation. 

  Figure 1  

In order to discretize the problem, place a grid over the plate and concentrate only on the points 
where the grid lines cross; the temperature at only those points will be considered.  The grid is 
fashioned so that some grid points lie on the boundary of the plate; assume that the temperature at
these points equals the external temperature.  At grid points inside the plate, assume the following 
numerical version of the Mean Value Property.

The Discretized Mean Value Property:



If a plate has reached thermal equilibrium, and P is a grid point not on the boundary of the plate, 
then the temperature at P is the average of the temperatures at the four closest grid points to P. 
Assumed is an equally-spaced grid of points not on the boundary of the plate.

Example:

Consider placing the following grid on the square plate; see Figure 2. There are four points inside 
the plate to consider; the temperatures at these points are labelled , , , and .  Assume that the

exterior temperatures are as labelled in Figure 2.

  Figure 2  

The Discretized Mean Value Property gives rise to the following four equations. The temperatures of
the four closest grid points are recorded clockwise in map order: West, North, East, South. For 
example, equals the the sum of four temperatures divided by 4 (the average of 4 temperatures), 

where West=10, North=30, East= South=

These four equations are equivalent to the following system of linear equations:

What if the external temperatures change? A new system of equations would need to be solved, but 
it would be very similar to the one previously considered.  To handle this difficulty more easily, the 



system may be rewritten in matrix-vector form, as we now show.

Define x =  , C =  and b =   , then 4x = Cx+b, and x is the vector of 

equilibrium temperatures. Notice that C functions as a type of adjacency matrix; the ( , ) entry is a 1 
if the points corresponding to  and  are connected in the grid, and is 0 otherwise.  Define A=4I-C

and write 4x = Cx+b in the form Ax =  b. The solution x to system Ax =  b may be written as x=
b.

Even though this formula appears to simplify matters when the external temperatures change, 
difficulties with using   abound, especially for large systems. See the Numerical Notes in sections
2.2 and 2.5 (textbook 5/E, pages 111 and 129) for more details. The LU decomposition may be used 
to alleviate these problems,  as in textbook exercise 2.5-31.  If A=LU, the system Ax=b  becomes 
LUx=b. , the systems Ly=x and Ux=y can be solved in turn to find x.

Problems to be Submitted:

Problem 1.

Solve the above system Ax =  b by row reduction (swap, scale, replace operations).

Problem 2.

Find ,   and x for the above system Ax =  b.  Confirm that your answer matches that of 
Problem 1.

Problem 3.

Suppose that the external temperature at the top of the plate changes to 50°. Use results from
Problem 2 to find the new equilibrium temperature distribution.

Problem 4.

Do an LU decomposition of A above.  Use it to solve the original system and the system with 
altered external temperatures.  Confirm your earlier results.

Problem 5.

A finer grid should give a better approximation of the equilibrium temperatures.  Consider the 
grid in Figure 3.



  Figure 3  
 
Now there are 25 grid points inside the plate, so we now have a system of 25 equations in 25 
unknowns.  The Maple commands given below define the matrix C and the vector b for this 
problem.  Find the temperature distribution in this case with the original external temperatures 

by either finding (4I - C)  or by using the LU factorization. Compare the refined answer to the 
answer from Problem 1 (e.g., grid point appears in Figure 1 as grid point x ).

C := Matrix(
[ [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  [0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],



  [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0] 
] );

b := Vector( [40, 30, 30, 30, 30, 10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 10, 0, 0, 0,
0, 30, 20, 20, 20, 20] );


