Linear Algebra 2270-2

Due in Week 9

The ninth week finishes chapter 4 and starts the work from chapter 5 . Here's the list of problems, problem notes and answers.

Problem week9-1. Define a function T from \mathcal{R}^{n} to \mathcal{R}^{m} by the matrix multiply formula $T(\vec{x})=A \vec{x}$. Prove that for all vectors \vec{u}, \vec{v} and all constants c, (a) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$, (b) $T(c \vec{u})=c T(\vec{u})$. Definition: T is called a linear transformation if T maps \mathcal{R}^{n} into \mathcal{R}^{m} and satisfies (a) and (b).

Problem week9-2. Let T be a linear transformation from \mathcal{R}^{n} into \mathcal{R}^{n} that satisfies $\|T(\vec{x})\|=\|\vec{x}\|$ for all \vec{x}. Prove that the $n \times n$ matrix A of T is orthogonal, that is, $A^{T} A=I$, which means the columns of A are orthonormal:

$$
\operatorname{col}(A, i) \cdot \operatorname{col}(A, j)=0 \quad \text { for } \quad i \neq j, \quad \text { and } \quad \operatorname{col}(A, i) \cdot \operatorname{col}(A, i)=1
$$

Problem week9-3. Let T be a linear transformation given by $n \times n$ orthogonal matrix A. Then $\|T(\vec{x})\|=\|\vec{x}\|$ holds. Construct an example of such a matrix A for dimension $n=3$, which corresponds to holding the z-axis fixed and rotating the $x y$-plane 45 degrees counter-clockwise. Draw a 3D-figure which shows the action of T on the unit cube $S=\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1\}$.

Section 4.4. Exercises 3, 6, 10, 13, 15, 18, 30, 32
Section 5.1. Exercises $1,3,8,14,21,27,33$
Section 5.2. Exercises 2, 5, 7, 11, 12, 16, 20, 23, 32

Problem Notes

Problem week9-1. Write out both sides of identities (a) and (b), replacing $T(\vec{w})$ by matrix product $A \vec{w}$ for various choices of \vec{w}. The compare sides to finish the proof.
Problem week9-2. Equation $\|T(\vec{x})\|=\|\vec{x}\|$ means lengths are preserved by T. It also means $\|A \vec{x}\|=\|\vec{x}\|$, which applied to $\vec{x}=\boldsymbol{\operatorname { c o l }}(I, k)$ means $\boldsymbol{\operatorname { c o l }}(A, k)$ has length equal to $\operatorname{col}(I, k)(=1)$. Write $\|\vec{w}\|^{2}=\vec{w} \cdot \vec{w}=\vec{w}^{T} \vec{w}$ (the latter a matrix product). The write out the equation $\|A \vec{x}\|^{2}=\|\vec{x}\|^{2}$, to see what you get, for various choices of unit vectors \vec{x}.
Problem week9-3. The equations for such a transformation can be written as plane rotation equations in x, y plus the identity in z. They might look like $x^{\prime}=x \cos \theta-y \sin \theta, y^{\prime}=\operatorname{similar}, z^{\prime}=z$. Choose θ then test it by seeing what happens to $x=1, y=0, z=0$, the answer for which is a rotation of vector $(1,0,0)$. The answer for A is obtained by writing the scala equations as a matrix equation $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)^{T}=A(x, y, z)^{T}$.
Issues for Strang's problems will be communicated here. For help, please send email, call 581-6879, or visit JWB 113.
4.4-18. It helps to find explicitly Q and R, which can be quickly checked in Maple.
5.2-2. Use exercise 1 in part (a).
5.2-12. Find the cofactor matrix for A. Then compare the inverse of A with $A C^{T}$.

Some Answers

4.4. Exercises $3,6,13,15,18,30,32$ have textbook answers.
4.4-10. (a) If q_{1}, q_{2}, q_{3} are orthonormal then the dot product of q_{1} with $c_{1} q_{1}+c_{2} q_{2}+c_{3} q_{3}=0$ gives $c_{1}=0$. Similarly $c_{2}=c_{3}=0$. Independent q 's. (b) $Q x=0$ implies $x=0$ implies $x=0$.
5.1. Exercises $1,8,14,21,27$ have textbook answers.
5.1-3. (a) False: $\operatorname{det}(I+I)$ is not $1+1$ (b) True: The product rule extends to $A B C$ (use it twice) (c) False: $\operatorname{det}(4 A)$ is $4^{n} \operatorname{det}(A)(\mathrm{d})$ False: $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), A B-B A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ is invertible.
5.1-33. I now know that maximizing the determinant for $1,-1$ matrices is Hadamard's problem (1893): see Brenner in American Math. Monthly volume 79 (1972) 626-630. Neil Sloane's wonderful On-Line Encyclopedia of Integer Sequences (research.att.com $/ \sim n j a s$) includes the solution for small n (and more references) when the problem is changed to 0,1 matrices. That sequence A003432 starts from $n=0$ with $1,1,1,2,3,5,9$. Then the $1,-1$ maximum for size n is 2^{n-1} times the 0,1 maximum for size $n-1$ (so (32)(5) = 160 for $n=6$ in sequence A003433). To reduce the $1,-1$ problem from 6 by 6 to the 0,1 problem for 5 by 5 , multiply the six rows by ± 1 to put +1 in column 1 . Then subtract row 1 from rows 2 to 6 to get a 5 by 5 submatrix S of -2 , 0 and divide S by -2 . Here is an advanced MATLAB code and a $1,-1$ matrix with largest $\operatorname{det}(A)=48$ for $n=5$:

```
    n=5; p=(n-1) `2; A0=ones(n); maxdet=0;
for k=0 : 2^p - 1
    Asub=rem(floor(k. * 2.^(-p + 1: 0)),2);
    A=AO;
    A(2:n, 2:n)= 1-2*reshape(Asub, n-1,n-1);
    if abs(det(A)>maxdet, maxdet=abs(det(A)); maxA=A;
    end
end
```

$$
\text { Output: } \quad \max A=\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & -1 \\
1 & 1 & -1 & 1 & -1 \\
1 & -1 & 1 & 1 & -1 \\
1 & -1 & -1 & -1 & 1
\end{array}\right], \quad \text { maxdet }=48
$$

5.2. Exercises 2, 11, 12, 16, 20, 32 have textbook answers.
5.2-5. Four zeros in the same row guarantee det $=0 . A=I$ has 12 zeros (maximum with $\operatorname{det} \neq 0$).
5.2-7. $5!/ 2=60$ permutation matrices have det $=+1$. Move row 5 of I to the top; starting from rows in the order ($5,1,2,3,4$), elimination to reach I will take four row exchanges.

5.2-23.

(a) If we choose an entry from B we must choose an entry from the zero block; result zero. This leaves entries from A times entries from D leading to $\operatorname{det}(A) \operatorname{det}(D)$.
(b) and (c) Take $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), C=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), D=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. See the solution to problem 25.

