Linear Algebra 2270-2 Due in Week 9

The ninth week finishes chapter 4 and starts the work from chapter 5. Here's the list of problems, problem notes and answers.

- **Problem week9-1.** Define a function T from \mathcal{R}^n to \mathcal{R}^m by the matrix multiply formula $T(\vec{x}) = A\vec{x}$. Prove that for all vectors \vec{u}, \vec{v} and all constants c, (a) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$, (b) $T(c\vec{u}) = cT(\vec{u})$. Definition: T is called a **linear transformation** if T maps \mathcal{R}^n into \mathcal{R}^m and satisfies (a) and (b).
- **Problem week9-2.** Let T be a linear transformation from \mathcal{R}^n into \mathcal{R}^n that satisfies $||T(\vec{x})|| = ||\vec{x}||$ for all \vec{x} . Prove that the $n \times n$ matrix A of T is orthogonal, that is, $A^T A = I$, which means the columns of A are **orthonormal**:

 $\mathbf{col}(A, i) \cdot \mathbf{col}(A, j) = 0$ for $i \neq j$, and $\mathbf{col}(A, i) \cdot \mathbf{col}(A, i) = 1$.

Problem week9-3. Let T be a linear transformation given by $n \times n$ orthogonal matrix A. Then $||T(\vec{x})|| = ||\vec{x}||$ holds. Construct an example of such a matrix A for dimension n = 3, which corresponds to holding the z-axis fixed and rotating the xy-plane 45 degrees counter-clockwise. Draw a 3D-figure which shows the action of T on the unit cube $S = \{(x, y, z) : 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$.

Section 4.4. Exercises 3, 6, 10, 13, 15, 18, 30, 32

- Section 5.1. Exercises 1, 3, 8, 14, 21, 27, 33
- Section 5.2. Exercises 2, 5, 7, 11, 12, 16, 20, 23, 32

Problem Notes

Problem week9-1. Write out both sides of identities (a) and (b), replacing $T(\vec{w})$ by matrix product $A\vec{w}$ for various choices of \vec{w} . The compare sides to finish the proof.

Problem week9-2. Equation $||T(\vec{x})|| = ||\vec{x}||$ means lengths are preserved by T. It also means $||A\vec{x}|| = ||\vec{x}||$, which applied to $\vec{x} = \operatorname{col}(I, k)$ means $\operatorname{col}(A, k)$ has length equal to $\operatorname{col}(I, k)$ (=1). Write $||\vec{w}||^2 = \vec{w} \cdot \vec{w} = \vec{w}^T \vec{w}$ (the latter a matrix product). The write out the equation $||A\vec{x}||^2 = ||\vec{x}||^2$, to see what you get, for various choices of unit vectors \vec{x} .

Problem week9-3. The equations for such a transformation can be written as plane rotation equations in x, y plus the identity in z. They might look like $x' = x \cos \theta - y \sin \theta$, y' = similar, z' = z. Choose θ then test it by seeing what happens to x = 1, y = 0, z = 0, the answer for which is a rotation of vector (1, 0, 0). The answer for A is obtained by writing the scala equations as a matrix equation $(x', y', z')^T = A(x, y, z)^T$.

Issues for Strang's problems will be communicated here. For help, please send email, call 581-6879, or visit JWB 113.

4.4-18. It helps to find explicitly Q and R, which can be quickly checked in Maple.

5.2-2. Use exercise 1 in part (a).

5.2-12. Find the cofactor matrix for A. Then compare the inverse of A with AC^{T} .

Some Answers

4.4. Exercises 3, 6, 13, 15, 18, 30, 32 have textbook answers.

4.4-10. (a) If q_1, q_2, q_3 are orthonormal then the dot product of q_1 with $c_1q_1 + c_2q_2 + c_3q_3 = 0$ gives $c_1 = 0$. Similarly $c_2 = c_3 = 0$. Independent q's. (b) Qx = 0 implies x = 0 implies x = 0.

5.1. Exercises 1, 8, 14, 21, 27 have textbook answers.

5.1-3. (a) False: det
$$(I + I)$$
 is not $1 + 1$ (b) True: The product rule extends to ABC (use it twice) (c) False: det $(4A)$ is $4^n \det(A)$ (d) False: $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $AB - BA = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is invertible.

5.1-33. I now know that maximizing the determinant for 1, -1 matrices is Hadamard's problem (1893): see Brenner in American Math. Monthly volume 79 (1972) 626-630. Neil Sloane's wonderful On-Line Encyclopedia of Integer Sequences (research.att.com/~njas) includes the solution for small n (and more references) when the problem is changed to 0, 1 matrices. That sequence A003432 starts from n = 0 with 1, 1, 1, 2, 3, 5, 9. Then the 1, -1 maximum for size n is 2^{n-1} times the 0, 1 maximum for size n - 1 (so (32)(5) = 160 for n = 6 in sequence A003433). To reduce the 1, -1 problem from 6 by 6 to the 0, 1 problem for 5 by 5, multiply the six rows by ± 1 to put +1 in column 1. Then subtract row 1 from rows 2 to 6 to get a 5 by 5 submatrix S of -2, 0 and divide S by -2. Here is an advanced MATLAB code and a 1, -1 matrix with largest det(A) = 48 for n = 5:

```
n=5; p=(n-1)^2; A0=ones(n); maxdet=0;
for k=0 : 2^p - 1
Asub=rem(floor(k. * 2.^(-p + 1: 0)),2);
A=A0;
A(2:n,2:n)= 1-2*reshape(Asub,n-1,n-1);
if abs(det(A)>maxdet, maxdet=abs(det(A)); maxA=A;
end
end
```

5.2. Exercises 2, 11, 12, 16, 20, 32 have textbook answers.

5.2-5. Four zeros in the same row guarantee det = 0. A = I has 12 zeros (maximum with det $\neq 0$).

5.2-7. 5!/2 = 60 permutation matrices have det = +1. Move row 5 of *I* to the top; starting from rows in the order (5, 1, 2, 3, 4), elimination to reach *I* will take four row exchanges.

5.2-23.

(a) If we choose an entry from B we must choose an entry from the zero block; result zero. This leaves entries from A times entries from D leading to $\det(A) \det(D)$.

(b) and (c) Take
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. See the solution to problem 25.