Linear Algebra 2270-2

Due in Week 8

The eighth week starts the work from chapter 4 . Here's the list of problems, followed by problem notes and a few answers.

Section 4.1. Exercises 5, 9, 11, 12, 16, 17, 19, 20, 21, 26
Section 4.2. Exercises $1,2,3,11,12,17,21,27,31$
Section 4.3. Exercises $1,6,12,17,18,21$

Problem Notes

Issues for Strang's problems will be communicated here. For help, please send email, call 581-6879, or visit JWB 113.

Some Answers

4.1. Exercises 16, 21 have textbook answers.
4.1-11.

For A : The nullspace is spanned by $(-2,1)$, the row space is spanned by $(1,2)$. The column space is the line through $(1,3)$ and $N\left(A^{T}\right)$ is the perpendicular line through $(3,-1)$.
For B : The nullspace of B is spanned by $(0,1)$, the row space is spanned by $(1,0)$. The column space and left nullspace are the same as for A.
4.1-17. If S is the subspace of \mathcal{R}^{3} containing only the zero vector, then S^{\perp} is \mathcal{R}^{3}. If S is spanned by $(1,1,1)$, then S^{\perp} is the plane spanned by $(1,-1,0)$ and $(1,0,-1)$. If S is spanned by $(2,0,0)$ and $(0,0,3)$, then S^{\perp} is the line spanned by $(0,1,0)$.
4.1-26. $A=\left(\begin{array}{rrr}2 & 2 & -1 \\ -1 & 2 & 2 \\ 2 & -1 & 2\end{array}\right)$

This example shows a matrix with perpendicular columns. $A^{T} A=9 I$ is diagonal: $\left(A^{T} A\right)_{i j}=($ column i of $A) \cdot($ column j of $A)$. When the columns are unit vectors, then $A^{T} A=I$.
4.2. Exercises 1, 3, 11, 21, 31 have textbook answers.

4.2-2.

(a) The projection of $b=(\cos \theta, \sin \theta)$ onto $a=(1,0)$ is $p=(\cos \theta, 0)$.
(b) The projection of $b=(1,1)$ onto $a=(1,-1)$ is $p=(0,0)$ since $a^{T} b=0$.
4.2-12. $P_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)=$ projection matrix onto the column space of A (the $x y$ plane)
$P_{2}=\left(\begin{array}{ccc}0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0.0 & 0.0 & 1\end{array}\right)=$ Projection matrix onto the second column space. Certainly $\left(P_{2}\right)^{2}=P_{2}$.
4.2-17. If $P^{2}=P$ then $(I-P)^{2}=(I-P)(I-P)=I^{2}-P I-I P+P^{2}=I-P$. When P projects onto the column space, then $I-P$ projects onto the left nullspace.
4.2-27. If $A^{T} A x=0$ then $A x$ is in the nullspace of A^{T}. But $A x$ is always in the column space of A. To be in both of those perpendicular spaces, $A x$ must be zero. So A and $A^{T} A$ have the same nullspace.
4.3. Exercises 1, 18, 21 have textbook answers.
4.3-6. $a=(1,1,1,1)$ and $b=(0,8,8,20)$ give $\hat{x}=\frac{a^{T} b}{\frac{a^{T} a}{20}}=9$ and the projection is $\hat{x} a=p=(9,9,9,9)$. Then $e^{T} a=(-9,-1,-1,11)^{T}(1,1,1,1)=0$ and $\|e\|=\sqrt{204}$.
4.3-12.
(a) $a=(1, \ldots, 1)$ has $a^{T} a=m, a^{T} b=b_{1}+\cdots+b_{m}$. Therefore $\hat{x}=a^{T} b / m$ is the mean of the b's
(b) $e=b-\hat{x} a, b=(1,2, b),\|e\|=\sum_{i=1}^{m}\left(b_{1}-\hat{x}\right)^{2}=$ variance
(c) $p=(3,3,3), e=(-2,-1,3), p^{T} e=0 . P=\frac{1}{3}\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
4.3-17. $\left(\begin{array}{rr}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right)\binom{C}{D}=\left(\begin{array}{r}7 \\ 7 \\ 21\end{array}\right)$. The solution $\vec{x}=\binom{9}{4}$ comes from $\left(\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right)\binom{C}{D}=\binom{35}{42}$.

