## Linear Algebra 2270-2

Due in Week 7

The seventh week finishes the work from chapter 3. Here's the list of problems, followed by problem notes and a few answers.

Section 3.5. Exercises 2, 5, 9, 10, 11, 15, 18, 23, 26, 31, 45
Section 3.6. Exercises 1, 2, 5, 7, 11, 24

## Problem Notes

Issues for Strang's problems will be communicated here. For help, please send email, call 581-6879, or visit JWB 113.

## Some Answers

3.5. Exercises 2, 11, 15, 18 have textbook answers.
3.5-5. (a) Reduce to upper triangular $\left(\begin{array}{rrr}1 & 2 & 3 \\ 0 & -5 & -7 \\ 0 & 0 & -18 / 5\end{array}\right)$. Invertible implies independent columns.
(b) Reduce to upper triangular $\left(\begin{array}{rrr}1 & 2 & -3 \\ 0 & 7 & -7 \\ 0 & 0 & 0\end{array}\right)$. Then $A\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, columns add to zero.
3.5-9. a) The four vectors in $\mathcal{R}^{3}$ are the columns of a 3 by 4 matrix $A$. There is a nonzero solution to $A x=0$ because there is at least one free variable
(b) Two vectors are dependent if $\left[v_{1} \mid v_{2}\right]$ has rank 0 or 1 . (OK to say "they are on the same line" or "one is a multiple of the other" but not $v_{2}$ is a multiple of $1-$ since $v_{1}$ might be 0 .)
(c) A nontrivial combination of $v_{1}$ and 0 gives $0: 0 \vec{v}_{1}+3 \overrightarrow{0}=\overrightarrow{0}$.
$\mathbf{3 . 5 - 1 0}$. The plane is the nullspace of 1 by 4 matrix $A=\left[\begin{array}{cccc}1 & 2 & -3 & -1\end{array}\right]$. Three free variables give three solutions $(x, y, z, t)=(2,-1,0,0),(3,0,1,0)$ and $(1,0,0,1)$. Combinations of those special solutions give more solutions (all solutions).
3.5-23. Columns 1 and 2 are bases for the (different) column spaces of $A$ and $U$; rows 1 and 2 are bases for the (equal) row spaces of $A$ and $U ;(1,-1,1)$ is a basis for the (equal) nullspaces
3.5-26.
(a) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
(b) Add $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
(c) $\left(\begin{array}{rrr}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{rrr}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right),\left(\begin{array}{rrr}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right)$

These are simple bases (among many others) for (a) diagonal matrices (b) symmetric matrices (c) skewsymmetric matrices. The dimensions are $3,6,3$.
3.5-31. (a) $y(x)=$ constant $C$ (b) $y(x)=3 x$ (c) $y(x)=3 x+C=y_{p}+y_{n}$ solves $d y / d x=3$.
3.5-45. If the left side of $\operatorname{dim}(V)+\operatorname{dim}(W)=\operatorname{dim}(V \cap W)+\operatorname{dim}(V+W)$ is greater than $n$, then $\operatorname{dim}(V+W) \leq n$ implies $\operatorname{dim}(V \cap W)$ must be greater than zero. So $V \cap W$ contains nonzero vectors.
3.6. Exercises 1, 11, 24 have textbook answers.

## 3.6-2.

A: Row space basis $=$ row $1=(1,2,4)$; nullspace $(-2,1,0)$ and $(-4,0,1)$; column space basis $=$ column $1=$ $(1,2)$; left nullspace $(-2,1)$.
B: Row space basis $=$ both rows $=(1,2,4)$ and $(2,5,8) ;$ column space basis $=$ two columns $=(1,2)$ and $(2,5)$; nullspace $(-4,0,1)$; left nullspace basis is empty because the space contains only $y=0$.
3.6-5. $\quad A=\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 0\end{array}\right)$ has those rows spanning its row space; $B=\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]$ has the same rows spanning its nullspace and $B A^{T}=0$.
3.6-7. Invertible 3 by 3 matrix $A$ : row space basis $=$ column space basis $=(1,0,0),(0,1,0),(0,0,1)$; nullspace basis and left nullspace basis are empty. Matrix $B=\left[\begin{array}{cc}A & A\end{array}\right]$ : row space basis $(1,0,0,1,0,0),(0,1,0,0,1,0)$, and $(0,0,1,0,0,1)$; column space basis $(1,0,0),(0,1,0),(0,0,1)$; nullspace basis $(-1,0,0,1,0,0)$ and $(0,-1,0,0,1,0)$ and ( $0,0,-1,0,0,1$ ); left nullspace basis is empty.
3.6-28. $B$ and $C$ (checkers and chess) both have rank 2 if $p \neq 0$. Row 1 and row 2 are a basis for the row space of $C, B^{T} y=0$ has 6 special solutions with -1 and 1 separated by a zero; $N\left(C^{T}\right)$ has $(-1,0,0,0,0,0,0,1)$ and $(0,-1,0,0,0,0,1,0)$ and columns $3,4,5,6$ of the identity $I ; N(C)$ is a challenge.

