Linear Algebra 2270-2

Due in Week 6

The sixth week continues the work from chapter 3. Here's the list of problems, followed by problem notes and a few answers.

Section 3.3. Exercises 1, 12, 21
Section 3.4. Exercises $1,3,4,6,13,16,33$

Problem Notes

Issues for Strang's problems will be communicated here. If there is a difficulty or impasse, then please send email, call 581-6879, or visit JWB 113.

Some Answers

3.3. Exercises 1,21 have a textbook answer.
3.3-12. Invertible r by r submatrices use pivot rows and columns $S=\left(\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right)$ and $S=[1]$ and $S=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

3.4. Exercises 4, 6, 13, 16 have a textbook answer.

$\mathbf{3 . 4} \mathbf{- 1}$. Row reduce the augmented matrix to upper triangular form

$$
\left(\begin{array}{llll|l}
2 & 4 & 6 & 4 & b_{1} \\
0 & 1 & 1 & 2 & b_{2}-b_{1} \\
0 & 0 & 0 & 0 & b_{3}+b_{2}-2 b_{1}
\end{array}\right)
$$

Then $A x=b$ has a solution when the last row is all zeros. This is the plane given by the equation $b_{3}+$ $b_{2}-2 b_{1}=0$. The nullspace is obtained by solving $A x=0$, which is a step away by back-substitution. The answer is $\vec{x}_{\text {nullspace }}=c_{1} \vec{s}_{1}+c_{2} \vec{s}_{2}$ where $\vec{s}_{1}=\left(\begin{array}{r}-1 \\ -1 \\ 1 \\ 0\end{array}\right), \vec{s}_{2}=\left(\begin{array}{r}2 \\ -2 \\ 0 \\ 1\end{array}\right)$. Then the complete solution is $c_{1} \vec{s}_{1}+c_{2} \vec{s}_{2}+\left(\begin{array}{c}b_{1} \\ b_{2}-b_{1} \\ 0\end{array}\right)$, subject to the restraint $b_{3}+b_{2}-2 b_{1}=0\left(b_{1}, b_{2}\right.$ unrestrained). Choosing $b_{1}=4$ and $b_{2}=3$ with $c_{1}=c_{2}=0$ gives particular solution $\vec{x}_{\text {particular }}=\left(\begin{array}{r}4 \\ -1 \\ 0 \\ 0\end{array}\right)$.
3.4-3. $\vec{x}_{\text {complete }}=\left(\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right)+x_{2}\left(\begin{array}{r}-3 \\ 1 \\ 0\end{array}\right)$. The matrix is singular but the equations are still solvable; b is in the column space. Our particular solution has free variable $y=0$.
$\mathbf{3 . 4} \mathbf{- 3 3}$. If the complete solution to $A x=\binom{1}{3}$ is $x=\binom{1}{0}+\binom{0}{c}$ then $A=\left(\begin{array}{ll}1 & 0 \\ 3 & 0\end{array}\right)$.

