Linear Algebra 2270-2

Due in Week 13

The thirteenth week finishes chapter 6 work. Extra exercises appear from Markov Matrices section 8.3. Here's the list of problems, followed by problem notes and answers.

Problem week13-1. Find the eigenvalues of this Markov matrix (their sum is the trace): $A=\left(\begin{array}{ll}.90 & .15 \\ .10 & .85\end{array}\right)$. What is the steady state eigenvector for the eigenvalue $\lambda_{1}=1$? See Exercise 8.3-1.

Problem week13-2. Prove that the square of a Markov matrix is also a Markov matrix. See Exercise 8.3-9.
Problem week13-3. If A is a Markov matrix, then does $I+A+A^{2}+\cdots$ add up to the resolvent $(A-I)^{-1}$? See Exercise 8.3-17.

Section 6.6. Exercises 3, 17, 20
Section 6.7. Exercises 1, 4, 5, 6

Problem Notes

Issues for Strang's problems will be communicated here. For help, please send email, call 581-6879, or visit JWB 113.

Some Answers

Problem week13-1. Eigenvalues $\lambda=1,0.75 ;(A-I) x=0$ gives the steady state $x=(.6, .4)$ with $A x=x$.
Problem week13-2. M^{2} is still nonnegative; multiply M on the left by $y=[1, \ldots, 1]$ (all ones) to obtain $y M=y$. Then multiply $y M=y$ on the right by M to find $y M^{2}=y$, which implies that the columns of M^{2} add to 1.
Problem week13-3. No, A has an eigenvalue $\lambda=1$ and $(I-A)^{-1}$ does not exist.
6.6. Exercise 17 has a textbook answer.
6.6-3. $B=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)^{-1}\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)=M^{-1} A M$;
$B=\left(\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right)=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)^{-1}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$;
$B=\left(\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{-1}\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
6.6-20. (a) $A=M^{-1} B M$ implies $A^{2}=A A=M^{-1} B^{2} M$. So A^{2} is similar to B^{2}. (b) A^{2} equals $(-A)^{2}$ but A may not be similar to $-B$ (it could be!). (c) $\left(\begin{array}{ll}3 & 1 \\ 0 & 4\end{array}\right)$ is diagonalizable to $\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right)$ because $\lambda_{1} \neq \lambda_{2}$, so these matrices are similar. (d) $\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$ has only one eigenvector, so it is not diagonalizable (e) $P A P^{T}$ is similar to A .
6.7. Exercises 1, 4, 5 have textbook answers.
6.7-6. $A A^{T}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ has $\sigma_{1}^{2}=3$ with $u_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}$ and $\sigma_{2}^{2}=1$ with $u_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}$.
$A^{T} A=\left(\begin{array}{rrr}1 & 1 & 0 \\ 1 & 271 & \\ 0 & 1 & 1\end{array}\right)$ has $\sigma_{1}^{2}=3$ with $v_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \sigma_{2}^{2}=1$ with $v_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$ and $v_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$.
Then

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)=\boldsymbol{\operatorname { a u g }}\left(u_{1}, u_{2}\right)\left(\begin{array}{rrr}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \operatorname{aug}\left(v_{1}, v_{2}, v_{3}\right)^{T}
$$

