Linear Algebra 2270-2

Due in Week 10

The tenth week finishes determinants chapter 5 and starts the work from eigenanalysis chapter 6 . Extra problems are assigned from Fourier Series section 8.5, the background for maple lab 4. Here's the list of problems, problem notes and answers.

Problem week10-1. The first three Legendre polynomials are $1, x$, and $x^{2}-1$. Choose c so that the fourth polynomial $x^{3}-c x$ is orthogonal to the first three. All integrals go from -1 to 1. See Exercise 8.5-4.

Problem week10-2. Graph the square wave. Then graph by hand the sum of two sine terms in its series, or graph by machine the sum of 2,3 , and 10 terms. The famous Gibbs phenomenon is the oscillation that overshoots the jump (this doesn't die down with more terms). See Exercise 8.5-7.

Section 5.3. Exercises 2, 4, 6, 9, 17, 28, 33, 36

Problem Notes

Issues for Strang's problems will be communicated here. For help, please send email, call 581-6879, or visit JWB 113.

Some Answers

Problem week10-1. Answer: $c=3 / 5$. Use \int_{-T}^{T} (odd function) $d x=0$ in the report.
Problem week10-2. The $-1,1$ odd square wave is $f(x)=x /|x|$ for $0<|x|<\pi$. Its Fourier series in equation [Section 8.5, equation (8)] is $4 / 1$ times [$\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x \cdots$]. The sum of the first N terms has an interesting shape, close to the square wave except where the wave jumps between -1 and 1 . At those jumps, the Fourier sum spikes the wrong way to ± 1.09 (the Gibbs phenomenon) before it takes the jump with the true values of $f(x)$.
This happens for the Fourier sums of all functions with jumps. It makes shock waves hard to compute. You can see it clearly in a graph of the sum of 10 terms.
5.3. Exercises 2, 4, 6, 9, 17, 36 have textbook answers.
5.3-28.Let $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$ and $\vec{u}=(x, y, z)$. Then

$$
J=\operatorname{det}\left[\vec{u}_{\rho}\left|\vec{u}_{\phi}\right| \vec{u}_{\theta}\right]=\left(\begin{array}{rrr}
\sin \phi \cos \theta & \rho \cos \phi \sin \theta & -\rho \sin \phi \sin \theta \\
\sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\
\cos \phi & -\rho \sin \phi & 0
\end{array}\right)
$$

Expand by cofactors along column 1 , then simplify with trig identities, obtaining the answer $=\rho^{2} \sin \phi$.
5.3-33. Find the components of $\vec{v} \times \vec{w}$ from determinant expansion $\operatorname{det}\left(\begin{array}{rrr}\vec{\imath} & \vec{\jmath} & \vec{k} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right)$. These are exactly the cofactors along row one of the determinant $\operatorname{det}\left(\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right)$. Then the determinant equals its cofactor expansion $=\operatorname{dot}$ product of \vec{u} and $\vec{v} \times \vec{w}$.

