MATH 2270-2 Final Exam Sample Problems Spring 2016

- **1.** (5 points) Let A be a 2×2 matrix such that $A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Compute $A \begin{pmatrix} 2 \\ 2 \end{pmatrix}$.
- 2. (5 points) State (1) the definition of norm, (2) the Cauchy-Schwartz inequality and (3) the triangle inequality, for vectors in \mathbb{R}^n .
- **3.** (5 points) Suppose A = B(C+D)E and all the matrices are $n \times n$ invertible. Find an equation for C.
- 4. (5 points) Find all solutions to the system of equations

$$2w + 3x + 4y + 5z = 1$$

$$4w + 3x + 8y + 5z = 2$$

$$6w + 3x + 8y + 5z = 1$$

- **5.** (5 points) Let $A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$. Show the details of two different methods for finding the inverse of the matrix A.
- **6.** (5 points) Find a factorization A = LU into lower and upper triangular matrices for the matrix $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$.
- 7. (5 points) Let Q be a 2×2 matrix with $QQ^T = I$. Prove that Q has columns of unit length and its two columns are orthogonal.
- **8.** (5 points) True or False? If the 3×3 matrices A and B are triangular, then AB is triangular.
- **9.** (5 points) True or False? If a 3×3 matrix A has an inverse, then for all vectors \vec{b} the equation $A\vec{x} = \vec{b}$ has a unique solution \vec{x} .
- 10. (5 points) Let A be a 3×4 matrix. Find the elimination matrix E which under left multiplication against A performs both (1) and (2) with one matrix multiply.

- (1) Replace Row 2 of A with Row 2 minus Row 1.
- (2) Replace Row 3 of A by Row 3 minus 5 times Row 2.

11. (10 points) Determinant problem, chapter 3.

- (a) [10%] True or False? The value of a determinant is the product of the diagonal elements.
- (b) [10%] True or False? The determinant of the negative of the $n \times n$ identity matrix is -1.
- (c) [30%] Assume given 3×3 matrices A, B. Suppose $E_2E_1A^2 = AB$ and E_1 , E_2 are elementary matrices representing respectively a combination and a multiply by 3. Assume $\det(B) = 27$. Let C = -A. Find all possible values of $\det(C)$.
- (d) [20%] Determine all values of x for which $(2I+C)^{-1}$ fails to exist, where I is the 3×3

identity and
$$C = \begin{pmatrix} 2 & x & -1 \\ 3x & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$
.

(e) [30%] Let symbols a, b, c denote constants and define

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ a & b & 0 & 1 \\ 1 & c & 1 & \frac{1}{2} \end{pmatrix}$$

Apply the adjugate [adjoint] formula for the inverse

$$A^{-1} = \frac{\mathbf{adj}(A)}{|A|}$$

to find the value of the entry in row 4, column 2 of A^{-1} .

12. (5 points) Define matrix A, vector \vec{b} and vector variable \vec{x} by the equations

$$A = \begin{pmatrix} -2 & 3 & 0 \\ 0 & -4 & 0 \\ 1 & 4 & 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -3 \\ 5 \\ 1 \end{pmatrix}, \quad \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

For the system $A\vec{x} = \vec{b}$, find x_3 by Cramer's Rule, showing **all details** (details count 75%). To save time, **do not compute** x_1, x_2 !

13. (5 points) Define matrix $A = \begin{pmatrix} 3 & 1 & 0 \\ 3 & 3 & 1 \\ 0 & 2 & 4 \end{pmatrix}$. Find a lower triangular matrix L and an upper triangular matrix U such that A = LU.

14. (5 points) Determine which values of k correspond to a unique solution for the system $A\vec{x} = \vec{b}$ given by

$$A = \begin{pmatrix} 1 & 4 & k \\ 0 & k-2 & k-3 \\ 1 & 4 & 3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 1 \\ -1 \\ k \end{pmatrix}.$$

15. (10 points) Let a, b and c denote constants and consider the system of equations

$$\begin{pmatrix} 1 & -b & c \\ 1 & c & a \\ 2 & -b+c & -a \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ -a \\ -a \end{pmatrix}$$

Use techniques learned in this course to briefly explain the following facts. Only write what is needed to justify a statement.

- (a). The system has a unique solution for $(b+c)(2a+c) \neq 0$.
- (b). The system has no solution if 2a+c=0 and $a\neq 0$ (don't explain the other possibilities).
- (c). The system has infinitely many solutions if a = c = 0 (don't explain the other possibilities).
- 16. (5 points) Explain how the span theorem applies to show that the set S of all linear combinations of the functions $\cosh x$, $\sinh x$ is a subspace of the vector space V of all continuous functions on $-\infty < x < \infty$.
- 17. (5 points) Write a proof that the subset S of all solutions \vec{x} in \mathbb{R}^n to a homogeneous matrix equation $A\vec{x} = \vec{0}$ is a subspace of \mathbb{R}^n . This is called the **kernel theorem**.
- 18. (5 points) Using the subspace criterion, write two hypotheses that imply that a set S in a vector space V is not a subspace of V. The full statement of three such hypotheses is called the **Not a Subspace Theorem**.
- **19.** (5 points) Report which columns of A are pivot columns: $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$.

20. (5 points) Find the complete solution $\vec{x} = \vec{x}_h + \vec{x}_p$ for the nonhomogeneous system

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}.$$

The homogeneous solution \vec{x}_h is a linear combination of Strang's special solutions. Symbol \vec{x}_p denotes a particular solution.

21. (5 points) Find the vector general solution \vec{x} to the equation $A\vec{x} = \vec{b}$ for

$$A = \begin{pmatrix} 1 & 0 & 0 & 4 \\ 3 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$$

22. (5 points) Find the reduced row echelon form of the matrix $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}$.

23. (5 points) A 10×13 matrix A is given and the homogeneous system $A\vec{x} = \vec{0}$ is transformed to reduced row echelon form. There are 7 lead variables. How many free variables?

24. (5 points) The rank of a 10×13 matrix A is 7. Find the nullity of A.

25. (5 points) Given a basis $\vec{v}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ of \mathcal{R}^2 , and $\vec{v} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$, then $\vec{v} = c_1\vec{v}_1 + c_2\vec{v}_2$ for a unique set of coefficients c_1, c_2 , called the *coordinates of* \vec{v} relative to the basis \vec{v}_1, \vec{v}_2 . Compute c_1 and c_2 .

26. (5 points) Determine independence or dependence for the list of vectors

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

27. (5 points) Check the independence tests which apply to prove that 1, x^2 , x^3 are independent in the vector space V of all functions on $-\infty < x < \infty$.

Wronskian test	Wronskian of $\vec{f_1}, \vec{f_2}, \vec{f_3}$ nonzero at $x = x_0$ implies inde-
	pendence of $\vec{f_1}, \vec{f_2}, \vec{f_3}$.
Rank test	Vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are independent if their augmented
	matrix has rank 3.
Determinant test	Vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are independent if their square aug-
	mented matrix has nonzero determinant.
Euler Atom test	Any finite set of distinct atoms is independent.
Sample test	Functions $\vec{f_1}, \vec{f_2}, \vec{f_3}$ are independent if a sampling matrix
	has nonzero determinant.
Pivot test	Vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are independent if their augmented matrix A has 3 pivot columns.
Orthogonality test	A set of nonzero pairwise orthogonal vectors is independent.

28. (5 points) Define S to be the set of all vectors \vec{x} in \mathbb{R}^3 such that $x_1 + x_3 = 0$ and $x_3 + x_2 = x_1$. Prove that S is a subspace of \mathbb{R}^3 .

29. (5 points) The 5×6 matrix A below has some independent columns. Report the independent columns of A, according to the Pivot Theorem.

$$A = \left(\begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 0 \\ -3 & 0 & 0 & -2 & 1 & -1 \\ -1 & 0 & 0 & 0 & 1 & 0 \\ 6 & 0 & 0 & 6 & 0 & 3 \\ 2 & 0 & 0 & 2 & 0 & 1 \end{array}\right)$$

30. (5 points) Let S be the subspace of \mathbb{R}^4 spanned by the vectors

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

Find a Gram-Schmidt orthonormal basis of S.

31. (5 points) Find the orthogonal projection vector \vec{v} (the shadow projection vector) of

 \vec{v}_2 onto \vec{v}_1 , given

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

32. (5 points) Let A be an $m \times n$ matrix with independent columns. Prove that $A^T A$ is invertible.

33. (5 points) Let A be an $m \times n$ matrix with $A^T A$ invertible. Prove that the columns of A are independent.

34. (5 points) Let A be an $m \times n$ matrix and \vec{v} a vector orthogonal to the nullspace of A. Prove that \vec{v} must be in the row space of A.

35. (5 points) Define matrix A and vector \vec{b} by the equations

$$A = \begin{pmatrix} -2 & 3 & 0 \\ 0 & -2 & 4 \\ 1 & 0 & -2 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Find the value of x_2 by Cramer's Rule in the system $A\vec{x} = \vec{b}$.

36. (5 points) Assume $A^{-1} = \begin{pmatrix} 2 & -6 \\ 0 & 4 \end{pmatrix}$. Find the inverse of the transpose of A.

37. (5 points) This problem uses the identity $A \operatorname{\mathbf{adj}}(A) = \operatorname{\mathbf{adj}}(A)A = |A|I$, where |A| is the determinant of matrix A. Symbol $\operatorname{\mathbf{adj}}(A)$ is the adjugate or adjoint of A. The identity is used to derive the adjugate inverse identity $A^{-1} = \operatorname{\mathbf{adj}}(A)/|A|$.

Let B be the matrix given below, where ? means the value of the entry does not affect the answer to this problem. The second matrix is $C = \mathbf{adj}(B)$. Report the value of the determinant of matrix $C^{-1}B^2$.

$$B = \begin{pmatrix} 1 & -1 & ? & ? \\ 1 & ? & 0 & 0 \\ ? & 0 & 2 & ? \\ ? & 0 & 0 & ? \end{pmatrix}, \quad C = \begin{pmatrix} 4 & 4 & 2 & 0 \\ -4 & 4 & -2 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

38. (5 points) Display the entry in row 3, column 4 of the adjugate matrix [or adjoint

matrix] of $A = \begin{pmatrix} 0 & 2 & -1 & 0 \\ 0 & 0 & 4 & 1 \\ 1 & 3 & -2 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$. Report both the symbolic formula and the numerical value.

39. (5 points) Consider a 3×3 real matrix A with eigenpairs

$$\begin{pmatrix} -1, \begin{pmatrix} 5 \\ 6 \\ -4 \end{pmatrix} \end{pmatrix}, \quad \begin{pmatrix} 2i, \begin{pmatrix} i \\ 2 \\ 0 \end{pmatrix} \end{pmatrix}, \quad \begin{pmatrix} -2i, \begin{pmatrix} -i \\ 2 \\ 0 \end{pmatrix} \end{pmatrix}.$$

Display an invertible matrix P and a diagonal matrix D such that AP = PD.

40. (5 **points**) Find the eigenvalues of the matrix $A = \begin{pmatrix} 0 & -12 & 3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 5 & 1 & 3 \end{pmatrix}$.

To save time, do not find eigenvectors!

- **41.** (5 points) The matrix $A = \begin{pmatrix} 0 & -12 & 3 \\ 0 & 1 & -1 \\ 0 & 1 & 3 \end{pmatrix}$ has eigenvalues 0, 2, 2 but it is not diagonalizable, because $\lambda = 2$ has only one eigenpair. Find an eigenvector for $\lambda = 2$. To save time, **don't find the eigenvector for** $\lambda = 0$.
- **42.** (5 points) Find the two complex eigenvectors corresponding to complex eigenvalues $-1 \pm 2i$ for the 2×2 matrix $A = \begin{pmatrix} -1 & 2 \\ -2 & -1 \end{pmatrix}$.
- **43.** (5 points) Let $A = \begin{pmatrix} -7 & 4 \\ -12 & 7 \end{pmatrix}$. Circle possible eigenpairs of A.

$$\left(1, \left(\begin{array}{c}1\\2\end{array}\right)\right), \quad \left(2, \left(\begin{array}{c}2\\1\end{array}\right)\right), \quad \left(-1, \left(\begin{array}{c}2\\3\end{array}\right)\right).$$

44. (5 points) Let I denote the 3×3 identity matrix. Assume given two 3×3 matrices B, C, which satisfy CP = PB for some invertible matrix P. Let C have eigenvalues -1, 1, 1. Find the eigenvalues of A = 2I + 3B.

45. (5 points) Let A be a 3×3 matrix with eigenpairs

$$(4, \vec{v}_1), (3, \vec{v}_2), (1, \vec{v}_3).$$

Let P denote the augmented matrix of the eigenvectors \vec{v}_2 , \vec{v}_3 , \vec{v}_1 , in exactly that order. Display the answer for $P^{-1}AP$. Justify the answer with a sentence.

46. (5 points) The matrix A below has eigenvalues 3, 3 and 3. Test A to see it is diagonalizable, and if it is, then display three eigenpairs of A.

$$A = \left(\begin{array}{rrr} 4 & 1 & 1 \\ -1 & 2 & 1 \\ 0 & 0 & 3 \end{array}\right)$$

- 47. (5 points) Assume A is a given 4×4 matrix with eigenvalues 0, 1, $3 \pm 2i$. Find the eigenvalues of 4A - 3I, where I is the identity matrix.
- 48. (5 points) Find the eigenvalues of the matrix $A = \begin{pmatrix} 3 & 2 & -5 & 0 & 0 \\ 3 & 0 & -12 & 3 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 5 & 1 & 2 \end{pmatrix}$.

 To save time, do not find the eigenvalues of the matrix $A = \begin{pmatrix} 3 & 2 & -5 & 0 & 0 \\ 3 & 0 & -12 & 3 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 5 & 1 & 2 \end{pmatrix}$.

To save time, **do not** find eigenvectors!

49. (5 points) Consider a 3×3 real matrix A with eigenpairs

$$\left(3, \begin{pmatrix} 13 \\ 6 \\ -41 \end{pmatrix}\right), \quad \left(2i, \begin{pmatrix} i \\ 2 \\ 0 \end{pmatrix}\right), \quad \left(-2i, \begin{pmatrix} -i \\ 2 \\ 0 \end{pmatrix}\right).$$

- (1) [10%] Display an invertible matrix P and a diagonal matrix D such that AP = PD.
- (2) [10%] Display a matrix product formula for A, but do not evaluate the matrix products, in order to save time.
- 50. (5 points) Assume two 3×3 matrices A, B have exactly the same characteristic equations. Let A have eigenvalues 2, 3, 4. Find the eigenvalues of (1/3)B - 2I, where I is the identity matrix.

- **51.** (5 points) Let 3×3 matrices A and B be related by AP = PB for some invertible matrix P. Prove that the roots of the characteristic equations of A and B are identical.
- **52.** (5 points) Find the eigenvalues of the matrix B:

$$B = \left(\begin{array}{cccc} 2 & 4 & -1 & 0 \\ 0 & 5 & -2 & 1 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 1 & 4 \end{array}\right)$$

- **53.** (**5 points**) Let W be the column space of $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$ and let $\vec{\mathbf{b}} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$. Let $\vec{\mathbf{b}}$ be the near point to $\vec{\mathbf{b}}$ in the subspace W. Find $\vec{\mathbf{b}}$.
- **54.** (5 points) There are real 2×2 matrices A such that $A^2 = -4I$, where I is the identity matrix. Give an example of one such matrix A and then verify that $A^2 + 4I = 0$.
- **55.** (5 points) Let $Q = \langle \vec{q}_1 | \vec{q}_2 \rangle$ be orthogonal 2×2 and D a diagonal matrix with diagonal entries λ_1, λ_2 . Prove that the 2×2 matrix $A = QDQ^T$ satisfies $A = \lambda_1 \vec{q}_1 \vec{q}_1^T + \lambda_2 \vec{q}_2 \vec{q}_2^T$.
- **56.** (5 points) A matrix A is defined to be positive definite if and only if $\vec{x}^T A \vec{x} > 0$ for nonzero \vec{x} . Which of these matrices are positive definite?

$$\left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right), \quad \left(\begin{array}{cc} 1 & -2 \\ -2 & 6 \end{array}\right), \quad \left(\begin{array}{cc} -1 & 2 \\ 2 & -6 \end{array}\right)$$

- **57.** (5 points) Let A be a real symmetric 2×2 matrix. Prove that the eigenvalues of A are real numbers.
- **58.** (5 points) Let B be a real 3×4 matrix. Prove that the eigenvalues of B^TB are non-negative.
- **59.** (**5 points**) The spectral theorem says that a symmetric matrix A can be factored into $A = QDQ^T$ where Q is orthogonal and D is diagonal. Find Q and D for the symmetric matrix $A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$.
- **60.** (5 points) Show that if B is an invertible matrix and A is similar to B, with $A = PBP^{-1}$, then A is invertible.

- **61.** (5 points) Write out the singular value decomposition for the matrix $A = \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix}$.
- **62.** (5 points) Strang's Four Fundamental Subspaces are the nullspace of A, the nullspace of A^T , the row space of A and the column space of A. Describe, using a figure or drawing, the locations in the matrices U, V of the singular value decomposition $A = U\Sigma V^T$ which are consumed by the four fundamental subspaces of A.
- **63.** (5 points) Give examples for a vertical shear and a horizontal shear in the plane. Expected is a 2×2 matrix A which represents the linear transformation.
- **64.** (5 points) Give examples for clockwise and counterclockwise rotations in the plane. Expected is a 2×2 matrix A which represents the linear transformation.
- **65.** (5 points) Let the linear transformation T from \mathbb{R}^3 to \mathbb{R}^3 be defined by its action on three independent vectors:

$$T\left(\begin{pmatrix}3\\2\\0\end{pmatrix}\right) = \begin{pmatrix}4\\4\\2\end{pmatrix}, T\left(\begin{pmatrix}0\\2\\1\end{pmatrix}\right) = \begin{pmatrix}4\\0\\2\end{pmatrix}, T\left(\begin{pmatrix}1\\2\\1\end{pmatrix}\right) = \begin{pmatrix}5\\1\\1\end{pmatrix}.$$

Find the unique 3×3 matrix A such that T is defined by the matrix multiply equation $T(\vec{x}) = A\vec{x}$.

66. (5 points) Let A be an $m \times n$ matrix. Denote by S_1 the row space of A and S_2 the column space of A. Prove that $T: S_1 \to S_2$ defined by $T(\vec{x}) = A\vec{x}$ is one-to-one and onto.

Essay Questions

- **67.** (5 points) Define an Elementary Matrix. Display the fundamental matrix multiply equation which summarizes a sequence of swap, combo, multiply operations, transforming a matrix A into a matrix B.
- **68.** (5 points) Let V be a vector space and S a subset of V. Define what it means for S to be a subspace of V. The definition is sometimes called the Subspace Criterion, a theorem with three requirements, with the conclusion that S is a subspace of V.
- **69.** (5 points) The null space S of an $m \times n$ matrix M is a subspace of \mathbb{R}^n . This is

called the *Kernel Theorem*, and it is proved from the **Subspace Criterion**. Both theorems conclude that some subset is a subspace, but they have different hypotheses. Distinguish the Kernel theorem from the Subspace Criterion, as viewed from hypotheses.

- **70.** (5 points) Least squares can be used to find the best fit line for the points (1,2), (2,2), (3,0). Without finding the line equation, describe how to do it, in a few sentences.
- 71. (5 points) State the Fundamental Theorem of Linear Algebra. Include Part 1: The dimensions of the four subspaces, and Part 2: The orthogonality equations for the four subspaces.
- **72.** (5 points) Display the equation for the Singular Value Decomposition (SVD), then cite the conditions for each matrix. Finish with a written description of how to construct the matrices in the SVD.
- 73. (5 points) State the **Spectral Theorem** for symmetric matrices. Include the important results included in the spectral theorem, about real eigenvalues and diagonalizability. Then discuss the **spectral decomposition**.