
MATH 2270-2 Sample Exam 2 S2012, revised April 5

ANSWERS

1. (10 points) Let A =

(
1 1 1

0 1 1

)
. Find a basis of vectors for each of the four fundamental

subspaces.

Answer:

The most efficient way to begin is to compute rref(A) =

(
1 0 0

0 1 1

)
. Then the last frame

algorithm supplies a basis vector

 0

−1

1

 for the nullspace of A. The computation also says

that the rank of A is two, so the two rows of A are independent. Finally, the pivot columns

of A are columns 1,2.

Row space: Rows 1 and 2 of A are a basis, because they are independent.

Column space: Columns 1 and 2 are the pivot columns of A, and they are a basis. This

vector space equals R2.

Left nullspace: Because nullspace(C) ⊥ rowspace(C) for any matrix C, then C = AT

implies the left nullspace of A is perpendicular to the column space of A. The column space

of A is the whole space. Then the left nullspace of A is the zero vector alone. In some cases

it is easier to find rref(AT ) and then use the last frame algorithm to compute a basis for

the nullspace of AT .

Nullspace: Because nullspace(A)⊥ rowspace(A), and rowspace(A) is two-dimensional, then

nullspace(A) is one-dimensional. We already computed a basis vector

 0

−1

1

.

2. (10 points) Assume V = span(~v1, ~v2) with ~v1 =


3

0

4

0

 , ~v2 =


1

1

1

0

. Find the Gram-

Schmidt orthonormal vectors ~q1, ~q2 whose span equals V .
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Answer:

~v1 is not length 1, it has length
√

32 + 42 = 5. Let ~q1 be the unit vector 1
5
~v1. The vector ~q2

cannot equal a scalar multiple of ~v2, because the latter is not perpendicular to ~q1. We have

to do some work to find ~q2.

According to the theory, ~q2 equals ~y2 divided by ‖~y2‖ and ~y2 = ~v2 minus the shadow projec-

tion vector of ~v2 onto span(~v1). Then

~y2 = ~v2 − c~v1, c =
~v1 · ~v2
~v1 · ~v1

.

Finally,

~y2 =


1

1

1

0

− 7

25


3

0

4

0

 =


4
25

1

− 3
25

0



The length is ‖~y2‖ =
√

( 4
25

)2 + 12 + (− 3
25

)2 =
√

1 + 1
25

= 1
5

√
26. Then ~q2 = 1

1
5

√
26


4
25

1

− 3
25

0


and {~q1, ~q2} is an orthonormal basis of V .

3. (10 points) Let Q be an orthonormal matrix. The normal equations for the system

Q~x = ~b finds the least squares solution ~v = QQT~b. The equations imply that P = QQT

projects ~b onto the span of the columns of Q. For the subspace V = span(~v1, ~v2) in the

previous problem, find matrix P . This matrix projects R4 onto V , while I − P projects R4

onto V ⊥.

Answer:

Let Q be the matrix whose columns are the vectors ~v1 and ~v2 from the previous problem.

Then

P = QQT =
1

25 · 26


3
√

26 4

0 25

4
√

26 −3

0 0


(

3
√

26 0 4
√

26 0

4 5 −3 0

)
=

1

26


10 4

5
12 0

4 5 −3 0

12 −3
5

17 0

0 0 0 0



4. (10 points) Find the least squares best fit line y = v1x+ v2 for the points (0, 1), (2, 3),

(4, 4).
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Answer:

Substitute the points (x, y) into y = v1x + v2 to obtain 3 equations in the two unknowns

v1, v2. Write the equations as a system A~v = ~b, using

A =

0 1

2 1

4 1

 , ~b =

1

3

4


Unfortunately, ~b is not in the column space of A, so A~v = ~b has no solution. The normal

equations ATA~v = AT~b give a least squares solution

~v = (ATA)−1AT~b

Compute ATA =

(
20 6

6 3

)
, then (ATA)−1 = 1

24

(
3 −6

−6 20

)
and

(ATA)−1AT =
1

24

(
−6 0 6

20 8 −4

)

Finally,

~v = (ATA)−1AT~b = (ATA)−1AT

1

3

4

 =
1

24

(
18

28

)

The best fit line y = v1x+ v2 is given by

y =
18

24
x+

28

24

5. (5 points) Find the determinant of the matrix
1 2 3 0

1 1 1 0

0 1 1 0

5 6 7 8


Answer:

The determinant is 8. The fastest method is (2), among the choices (1) The four rules; (2)

Cofactor method; (3) Sarrus’ 3×3 rule. Please observe that (3) does not apply directly, and

there is no Sarrus’ Rule for 4× 4 matrices.
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6. (10 points) Let A =

(
1 3

2 2

)
. Find all eigenpairs of A.

Answer:

The characteristic polynomial is∣∣∣∣∣1− λ 3

2 2− λ

∣∣∣∣∣ = (1− λ)(2− λ)− 6 = λ2 − 3λ− 4 = (λ− 4)(λ+ 1)

The eigenvalues λ are the roots of the characteristic polynomial: λ = 4,−1. The eigenvalues

are distinct, leading to two independent eigenvectors and hence two eigenpairs.

An eigenvector ~v1 for λ1 = 4 is computed from the nullspace of A − 4ID =

(
−3 3

2 −2

)
.

The last frame algorithm implies ~v1 =

(
1

1

)
, which is the partial derivative of the general

solution on invented symbol t1.

An eigenvector ~v2 for λ2 = −1 is computed from the nullspace of A − (−1)ID =

(
2 3

2 3

)
.

The last frame algorithm implies ~v2 =

(
−3

2

1

)
, which is the partial derivative of the general

solution on invented symbol t1.

7. (10 points) Let A =



1 0 0 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 3 1 0

0 0 0 0 3 0

0 0 0 0 0 3


. Find all eigenpairs.

Answer:

The eigenvalues are the diagonal entries 1, 2, 3. Double and triple roots exist, therefore

it is not always true that there will be n eigenpairs (n = 6 here). For λ = 1, 2, 3, 3 the
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corresponding eigenvectors are 

1

0

0

0

0

0


,



0

1

0

0

0

0


,



0

0

0

1

0

0


,



0

0

0

0

0

1


REMARK. Jordan Theory predicts exactly 4 eigenpairs, with two eigenpairs from root λ = 3.

The prediction uses the theory of block matrices diag(B1, B2, . . . , Bk) and knowledge of ex-

amples of Jordan forms. The number of Jordan blocks equals the number of eigenpairs, which

is exactly four. Known shortcuts exist for computing the eigenpairs, but these techniques

save only 5 minutes of solution time.

ANSWER CHECK. To test the answers, multiply A~v for an eigenpair (λ,~v), then check that

the answer after multiplication simplifies to λ~v.

8. (15 points) Find an equation for the plane in R3 that contains the three points (1, 0, 0),

(1, 1, 1), (1, 2, 0).

Answer:

The vector from (1, 0, 0) to (1, 1, 1) is ~v =

0

1

1

, obtained by the head minus tail rule. The

vector from (1, 0, 0) to (1, 2, 0) is ~w =

0

2

0

.

The determinant equation for the plane is (x, y, z) − (1, 0, 0) dot product with the vector

cross product of ~v and ~w, known as the scalar triple product:∣∣∣∣∣∣∣
x− 1 y − 0 z − 0

0 1 1

0 2 0

∣∣∣∣∣∣∣ = 0.

Geometry. The plane containing the three points is a collection V of vectors

1

0

0

 +
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a

0

1

1

+ b

0

2

0

, where a and b are arbitrary real numbers.

Set V is not a subspace, it is vector

1

0

0

 translated by the points in the vector subspace

spanned by ~v and ~w. This is called a linear variety.

9. (10 points) Suppose an n× n matrix A has all eigenvalues equal to 0. Show from the

Cayley-Hamilton Theorem that An has all entries equal to 0.

Answer:

Solution: The proof results from showing that the characteristic equation of A is λn = 0,

because then by the Cayley-Hamilton theorem the matrix A satisfies its own characteristic

equation, giving An = 0, which is the claimed result.

The characteristic polynomial of A is |A−λI| = (−λ)n +c1(−λ)n−1 + · · ·+cn. If λ = 0 is the

only root of |A− λI| = 0, then the Root-Factor theorem of college algebra implies that this

polynomial has n factors of (λ − 0). Therefore, c1 = · · · = cn = 0 and |A − λI| = (−λ)n =

(−1)nλn. Then the characteristic equation of A is (−1)nλn = 0, or equivalently, λn = 0.

10. (15 points) Prove the Cayley-Hamilton Theorem for 2× 2 matrices with real eigen-

values.

Answer:

Start with A =

(
a b

c d

)
, characteristic equation λ2+c1λ+c2 = 0, where c1 = −trace(A) =

−(a+d) and c2 = det(A) = ad−bc Write the characteristic equation as λ2+c1λ = −c2, then

substitute as in the Cayley-Hamilton theorem, arriving at the proposed equation A2 +c1A =

−c2I. Expand the left side:

A2 + c1A = A(A+ c1I) = A(A− (a+ d)I) = −A adj(A), adj(A) =

(
d −b
−c a

)
.

Because A adj(A) = |A|I (the adjugate identity), then the right side of the preceding display

simplifies to − det(A)I = −c2I. This proves the Cayley-Hamilton theorem for 2×2 matrices:

A2 + c1A = −c2I.
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11. (5 points) Suppose a 3× 3 matrix A has eigenpairs3,

 1

2

0


 ,

3,

 1

1

0


 ,

0,

 0

0

1


 .

Display an invertible matrix P and a diagonal matrix D such that AP = PD.

Answer:

Define P =

 1 1 0

2 1 0

0 0 1

, D =

 3 0 0

0 3 0

0 0 0

. Then AP = PD.

12. (10 points) Suppose a 3× 3 matrix A has eigenpairs3,

 1

2

0


 ,

3,

 1

1

0


 ,

0,

 0

0

1


 .

Find A.

Answer:

Define P =

 1 1 0

2 1 0

0 0 1

, D =

 3 0 0

0 3 0

0 0 0

. Then AP = PD. Compute A = PDP−1

from two matrix multiplications. The answer is

A =

 1 1 0

2 1 0

0 0 1


 3 0 0

0 3 0

0 0 0


 −1 1 0

2 −1 0

0 0 1

 =

 3 0 0

0 3 0

0 0 0

 .

13. (10 points) Assume A is 2× 2 and Fourier’s model holds:

A

(
c1

(
1

1

)
+ c2

(
1

−1

))
= 2c2

(
1

−1

)
.

Find A.

Answer:
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Construct from Fourier’s Model the eigenpairs

(
0,

(
1

1

))
,

(
2,

(
−1

1

))
. Then P =(

1 1

1 −1

)
and D =

(
0 0

0 2

)
. Then AP = PD implies

A = PDP−1 =

(
1 1

1 −1

)(
0 0

0 2

)(
.5 .5

.5 −.5

)
=

(
1 −1

−1 1

)
.

14. (10 points) How many eigenpairs? (a)

 0 1 0

0 0 1

0 0 0

, (b)

 0 0 1

0 0 0

0 0 0

.

Answer:

(a) Just one. This is a Jordan block, and such blocks have exactly one eigenpair. (b)

Exactly two eigenpairs. The eigenvalues are on the diagonal, 0, 0, 0. Then for λ = 0 we have

B = A − λI = A is already in reduced echelon form. The equations for ~v = (x1, x2, x3) are

x3 = 0, 0 = 0, 0 = 0. Then ~v is a linear combination of two special solutions, because there

are two free variables, hence two eigenpairs.

15. (5 points) True or False? A Jordan block has one and only one eigenpair.

Answer:

True. The eigenvalues are on the diagonal, λ, λ, . . . , λ. Then B = A − λI is already in

reduced echelon form

B =


0 1 0 · · · 0 0

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0


and all variables are lead variables, except the first variable, which is a free variable. So

there is one special solution and therefore just one eigenpair.

16. (5 points) True or False? A diagonal block matrix A =

(
B1 0

0 B2

)
where B1, B2

are Jordan blocks has exactly two eigenpairs.

Answer:

True. Although this does not follow directly from the previous problem, it can be analyzed
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in the same way, one Jordan block at a time.

No new questions beyond this point.
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