1. (5 points) State the Three Possibilities for a linear system $A \vec{x}=\vec{b}$.
2. (5 points) Completely describe each operation in the basic Toolkit for solving a linear system (combo, swap, mult).
3. (5 points) Can the following system have no solution for some choice of b_{1}, b_{2}, b_{3} ?

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =b_{1} \\
4 x_{1}+2 x_{2}+3 x_{3} & =b_{2} \\
x_{3}+x_{4} & =b_{3}
\end{aligned}
$$

4. (5 points) True or false? Explain. If A and B are $n \times n$ invertible, then $(A B)^{-1}=$ $A^{-1} B^{-1}$.
5. (5 points) True or false? Explain. If square matrices A and B satisfy $A B=I$, then $A \vec{x}=\vec{b}$ has a unique solution \vec{x} for each vector \vec{b}.
6. (5 points) Give an example of a 3×2 matrix A and a frame sequence with three or more frames, starting at A, which proves that the invented system $A \vec{x}=\overrightarrow{0}$ has a unique solution.
7. (5 points) Give an example of a 4×3 matrix A and a frame sequence with three or more frames, starting at A, which proves that the invented system $A \vec{x}=\overrightarrow{0}$ has infinitely many solutions.
8. (5 points) Let A be a 3×4 matrix. What is the elimination matrix that replaces Row 2 of A with Row 2 minus Row 1 and replaces Row 3 of A by Row 3 minus 2 times Row 1?
9. (5 points) Let A be a 3×3 matrix. Let

$$
F=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Assume F is obtained from A by the following sequential row operations: (1) Swap rows 2 and 3; (2) Add -2 times row 2 to row 3; (3) Add 3 times row 1 to row 2; (4) Multiply row 2 by -3 . Find A.
10. (5 points) What is the inverse of the following matrix?

$$
E=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & -5 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

11. (5 points) Describe in words the effect of multiplying

$$
E=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -3 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right)
$$

on the left of a 4×5 matrix A to get $E A$.
12. (20 points) Let a, b and c denote constants and consider the system of equations

$$
\left(\begin{array}{ccc}
1 & b-c & a \\
1 & c & -a \\
2 & b & a
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
-a \\
a \\
a
\end{array}\right)
$$

(a). Determine those values of a, b and c such that the system has a unique solution.
(b). Determine those values of a, b and c such that the system has no solution.
(c). Determine those values of a, b and c such that the system has infinitely many solutions.

To save time, don't attempt to solve the equations or to produce a complete frame sequence.

```
macro(combo=linalg[addrow]);macro(mult=linalg[mulrow]);
macro(swap=linalg[swaprow]);
A:=(a,b,c)->Matrix([[1,b-c,a,-a],[1, c,-a,a],[2,b,a,a]]);
A1:=combo(A (a,b,c) , 1, 2, -1);
A2:=combo(A1, 1,3,-2);
A3:=combo(A2, 2, 3, -1);
A4:=combo(A3,3,2,2);
A5:=combo(A4, 3, 1,-1);
A5 := Matrix([[1,b-c,0,-2*a],[0,-b+2*c,0,4*a],[0,0,a,a]]);
```

13. (15 points) Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Let $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. Let $C=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Calculate the following:

$$
A(B C), \quad(A B) C, \quad C^{2}, \quad 2 A+B-C, \quad A(B-C)
$$

14. (20 points) Classify the following sets of vectors for (1) Independence or (2) Dependence. For each set of vectors, report whether or not they form a basis for the indicated vector space.

$$
\begin{gathered}
\binom{1}{2},\binom{2}{2} \text { in } \mathbb{R}^{2} \\
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) \text { in } \mathbb{R}^{3}
\end{gathered}
$$

15. (20 points) Find all solutions to the equation $A \bar{x}=\bar{b}$ for

$$
\begin{gathered}
A=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right) \\
\bar{b}=\binom{0}{4}
\end{gathered}
$$

16. (20 points) Prove that a system of 4 linear equations in 5 unknowns has either no solution or infinitely many solutions.
17. (20 points) Let matrix A have 201 rows and 201 columns. All entries of A are zero off the diagonal, except for the number -7 in row 107 , column 35 . The diagonal entries of A are all one. Describe the inverse of A, in words.

End of the sample exam questions.

