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Characteristic Equation

Definition 1 (Characteristic Equation)
Given a square matrixA, the characteristic equation ofA is the polynomial equation

det(A− rI) = 0.

The determinant det(A− rI) is formed by subtracting r from the diagonal ofA.
The polynomial p(r) = det(A− rI) is called the characteristic polynomial.

• IfA is 2× 2, then p(r) is a quadratic.

• IfA is 3× 3, then p(r) is a cubic.

• The determinant is expanded by the cofactor rule, in order to preserve factorizations.



Characteristic Equation Examples

Create det(A− rI) by subtracting r from the diagonal ofA.

Evaluate by the cofactor rule.

A =

(
2 3
0 4

)
, p(r) =

∣∣∣∣ 2− r 3
0 4− r

∣∣∣∣ = (2− r)(4− r)

A =

 2 3 4
0 5 6
0 0 7

 , p(r) =

∣∣∣∣∣∣
2− r 3 4
0 5− r 6
0 0 7− r

∣∣∣∣∣∣ = (2−r)(5−r)(7−r)



Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)
A square matrix A satisfies its own characteristic equation.

If p(r) = (−r)n + an−1(−r)n−1 + · · · a0, then the result is the equation

(−A)n + an−1(−A)n−1 + · · ·+ a1(−A) + a0I = 0,

where I is the n× n identity matrix and 0 is the n× n zero matrix.

The 2× 2 Case

Then A =

(
a b
c d

)
and for a1 = trace(A), a0 = det(A) we have p(r) =

r2 + a1(−r) + a0. The Cayley-Hamilton theorem says

A2 + a1(−A) + a0

(
1 0
0 1

)
=

(
0 0
0 0

)
.



Cayley-Hamilton Example

Assume

A =

 2 3 4
0 5 6
0 0 7


Then

p(r) =

∣∣∣∣∣∣
2− r 3 4
0 5− r 6
0 0 7− r

∣∣∣∣∣∣ = (2− r)(5− r)(7− r)

and the Cayley-Hamilton Theorem says that

(2I −A)(5I −A)(7I −A) =

 0 0 0
0 0 0
0 0 0

 .



Cayley-Hamilton-Ziebur Theorem

Theorem 2 (Cayley-Hamilton-Ziebur Structure Theorem for ~u′ = A~u)
A component function uk(t) of the vector solution ~u(t) for ~u′(t) = A~u(t) is
a solution of the nth order linear homogeneous constant-coefficient differential
equation whose characteristic equation is det(A− rI) = 0.

Meaning: The vector solution ~u(t) of

~u′ = A~u

is a vector linear combination of the Euler solution atoms constructed from the roots of the
characteristic equation det(A− rI) = 0.



Proof of the Cayley-Hamilton-Ziebur Theorem
Consider the case n = 2, because the proof details are similar in higher dimensions.

r2 + a1r + a0 = 0 Expanded characteristic equation
A2 + a1A+ a0I = 0 Cayley-Hamilton matrix equation

A2~u + a1A~u + a0~u = ~0 Right-multiply by ~u = ~u(t)

~u′′ = A~u′ = A2~u Differentiate ~u′ = A~u

~u′′ + a1~u
′ + a0~u = ~0 Replace A2~u→ ~u′′, A~u→ ~u′

Then the components x(t), y(t) of ~u(t) satisfy the two differential equations

x′′(t) + a1x
′(t) + a0x(t) = 0,

y′′(t) + a1y
′(t) + a0y(t) = 0.

This system implies that the components of ~u(t) are solutions of the second order DE with characteristic equa-
tion det(A− rI) = 0.



Cayley-Hamilton-Ziebur Method

The Cayley-Hamilton-Ziebur Method for ~u′ = A~u

Let atom1, . . . , atomn denote the Euler solution atoms constructed from the nth order
characteristic equation det(A− rI) = 0 by Euler’s Theorem. The solution of

~u′ = A~u

is given for some constant vectors ~d1, . . . , ~dn by the equation

~u(t) = (atom1)~d1 + · · ·+ (atomn)~dn

Warning: The vectors~d1, . . . ,~dn are not arbitrary; they depend on then initial conditions
uk(0) = ck, k = 1, . . . , n.



Cayley-Hamilton-Ziebur Method Conclusions

• Solving ~u′ = A~u is reduced to finding the constant vectors ~d1, . . . , ~dn.

• The vectors ~dj are not arbitrary. They are uniquely determined byA and ~u(0)!
A general method to find them is to differentiate the equation

~u(t) = (atom1)~d1 + · · ·+ (atomn)~dn

n − 1 times, then set t = 0 and replace ~u(k)(0) by Ak~u(0) [because ~u′ =
A~u, ~u′′ = A~u′ = AA~u, etc]. The resulting n equations in vector unknowns
~d1, . . . , ~dn can be solved by elimination.

• If all atoms constructed are base atoms constructed from real roots, then each ~dj is a
constant multiple of a real eigenvector of A. Atom ert corresponds to the eigenpair
equationA~v = r~v.



A 2× 2 Illustration

Let’s solve ~u′ =
(
1 2
2 1

)
~u, ~u(0) =

(
−1
2

)
.

The characteristic polynomial of the non-triangular matrixA =

(
1 2
2 1

)
is

∣∣∣∣ 1− r 2
2 1− r

∣∣∣∣ = (1− r)2 − 4 = (r + 1)(r − 3).

Euler’s theorem implies solution atoms are e−t, e3t.

Then ~u is a vector linear combination of the solution atoms,

~u = e−t~d1 + e3t~d2.



How to Find ~d1 and ~d2

We solve for vectors ~d1, ~d2 in the equation

~u = e−t~d1 + e3t~d2.

Advice: Define~d0 =

(
−1
2

)
. Differentiate the above relation. Replace ~u′ via ~u′ =

A~u, then set t = 0 and replace ~u(0) by ~d0 in the two formulas to obtain the relations

~d0 = e0~d1 + e0~d2

A~d0 = −e0~d1 + 3e0~d2

We solve for ~d1, ~d2 by elimination. Adding the equations gives ~d0 + A~d0 = 4~d2 and

then ~d0 =

(
−1
2

)
implies

~d1 = 3

4
~d0 − 1

4
A~d0 =

(
−3/2
3/2

)
,

~d2 = 1

4
~d0 +

1

4
A~d0 =

(
1/2
1/2

)
.



Summary of the 2× 2 Illustration
The solution of the dynamical system

~u′ =

(
1 2
2 1

)
~u, ~u(0) =

(
−1
2

)
is a vector linear combination of solution atoms e−t, e3t given by the equation

~u = e−t
(
−3/2
3/2

)
+ e3t

(
1/2
1/2

)
.

Eigenpairs for Free
Each vector appearing in the formula is a scalar multiple of an eigenvector, because eigen-
values−1, 3 are real and distinct. The simplified eigenpairs are(

−1,
(
−1
1

))
,

(
3,

(
1
1

))
.



A Matrix Method for Finding ~d1 and ~d2

The Cayley-Hamilton-Ziebur Method produces a unique solution for ~d1, ~d2 because the
coefficient matrix (

e0 e0

−e0 3e0

)
is exactly the WronskianW of the basis of atoms e−t, e3t evaluated at t = 0. This same
fact applies no matter the number of coefficients ~d1, ~d2, . . . to be determined.

Let d0 = u(0), the initial condition. The answer for ~d1 and ~d2 can be written in matrix
form in terms of the transposeW T of the Wronskian matrix as

〈~d1|~d2〉 = 〈~d0|A~d0〉(W T)−1.

Symbol 〈A|B〉 is the augmented matrix of column vecotrsA,B.



Solving a 2× 2 Initial Value Problem by the Matrix Method

~u′ = A~u, ~u(0) =

(
−1
2

)
, A =

(
1 2
2 1

)
.

Then ~d0 =

(
−1
2

)
,A~d0 =

(
1 2
2 1

)(
−1
2

)
=

(
3
0

)
and

〈~d1|~d2〉 =
(
−1 3
2 0

)((
1 1
−1 3

)T)−1
=

(
−3

2

1

2
3

2

1

2

)
.

Extract d1 =

(
−3

2
3

2

)
, d2 =

(
1

2
1

2

)
. Then the solution of the initial value problem is

~u(t) = e−t
(
−3

2
3

2

)
+ e3t

(
1

2
1

2

)
=

(
−3

2
e−t + 1

2
e3t

3

2
e−t + 1

2
e3t

)
.



Other Representations of the Solution ~u

Let y1(t), . . . , yn(t) be a solution basis for the nth order linear homogeneous constant-
coefficient differential equation whose characteristic equation is det(A− rI) = 0.

Consider the solution basis atom1, atom2, . . . , atomn. Each atom is a linear combina-
tion of~y1, . . . ,~yn. Replacing the atoms in the formula

~u(t) = (atom1)~d1 + · · ·+ (atomn)~dn

by these linear combinations implies there are constant vectors ~D1, . . . , ~Dn such that

~u(t) = y1(t)~D1 + · · ·+ yn(t)~Dn



Another General Solution of ~u′ = A~u

Theorem 3 (General Solution)
The unique solution of ~u′ = A~u, ~u(0) = ~d0 is

~u(t) = φ1(t)~u0 + φ2(t)A~u0 + · · ·+ φn(t)A
n−1~u0

where φ1, . . . , φn are linear combinations of atoms constructed from roots of the
characteristic equation det(A− rI) = 0, such that

Wronskian(φ1(t), . . . , φn(t))|t=0 = I.



Proof of the theorem

Proof: Details will be given for n = 3. The details for arbitrary matrix dimension n is a routine modification
of this proof. The Wronskian condition implies φ1, φ2, φ3 are independent. Then each atom constructed from
the characteristic equation is a linear combination of φ1, φ2, φ3. It follows that the unique solution ~u can be
written for some vectors ~d1, ~d2, ~d3 as

~u(t) = φ1(t)~d1 + φ2(t)~d2 + φ3(t)~d3.

Differentiate this equation twice and then set t = 0 in all 3 equations. The relations ~u′ = A~u and ~u′′ = A~u′ =
AA~u imply the 3 equations

~d0 = φ1(0)~d1 + φ2(0)~d2 + φ3(0)~d3

A~d0 = φ′
1(0)

~d1 + φ′
2(0)

~d2 + φ′
3(0)

~d3

A2~d0 = φ′′
1 (0)

~d1 + φ′′
2 (0)

~d2 + φ′′
3 (0)

~d3

Because the Wronskian is the identity matrix I, then these equations reduce to

~d0 = 1~d1 + 0~d2 + 0~d3

A~d0 = 0~d1 + 1~d2 + 0~d3

A2~d0 = 0~d1 + 0~d2 + 1~d3

which implies ~d1 = ~d0, ~d2 = A~d0, ~d3 = A2~d0.
The claimed formula for ~u(t) is established and the proof is complete.



Change of Basis Equation

Illustrated here is the change of basis formula for n = 3. The formula for general n is
similar.
Letφ1(t),φ2(t),φ3(t) denote the linear combinations of atoms obtained from the vector
formula (

φ1(t), φ2(t), φ3(t)
)
=
(

atom1(t), atom2(t), atom3(t)
)
C−1

where
C = Wronskian(atom1, atom2, atom3)(0).

The solutions φ1(t), φ2(t), φ3(t) are called the principal solutions of the linear ho-
mogeneous constant-coefficient differential equation constructed from the characteristic
equation det(A− rI) = 0. They satisfy the initial conditions

Wronskian(φ1, φ2, φ3)(0) = I.


