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Characteristic Equation

Definition 1 (Characteristic Equation)
Given a square matrix A, the characteristic equation of A is the polynomial equation

det(A — rI) = 0.

The determinant det( A — 1) is formed by subtracting 7 from the diagonal of A.
The polynomial p(r) = det(A — rI) is called the characteristic polynomial.

o If Ais2 X 2, then p(r) is a quadratic.
o If Ais3 X 3, then p(r) is a cubic.

e The determinant is expanded by the cofactor rule, in order to preserve factorizations.



Characteristic Equation Examples

Create det(A — rI) by subtracting r from the diagonal of A.

Evaluate by the cofactor rule.
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= (2—7r)(5—7)(7T—71)




Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)
A square matrix A satisfies its own characteristic equation.

fp(r) = (—7r)" 4+ a,_1(—7)"" ' + - - - ay, then the result is the equation
(_A)n —+ an_l(—A)”_l i al(—A) + aoI = 0,

where I is the n X m identity matrix and 0 is the n. X n zero matrix.

The 2 X 2 Case

a b
Then A = (cd

r? 4+ a;(—7r) + aq. The Cayley-Hamilton theorem says

) and for a; = trace(A), ay = det(A) we have p(r) =

A2+a1(—A)—|—a0((1) (1)) = (8 8)



Cayley-Hamilton Example

Assume

Then

p(r) =

0 o 7
and the Cayley-Hamilton Theorem says that

(2I — A)(5I — A)(7TI — A) = (

o QOO
o QOO
o QOO



Cayley-Hamilton-Ziebur Theorem

Theorem 2 (Cayley-Hamilton-Ziebur Structure Theorem for i’ = An)

A component function u(t) of the vector solution d(t) for @(t) = Atu(t) is
a solution of the nth order linear homogeneous constant-coefficient differential
equation whose characteristic equation is det(A — r»I) = 0.

Meaning: The vector solution t(t) of

1s a vector linear combination of the Euler solution atoms constructed from the roots of the
characteristic equation det(A — rI) = 0.



Proof of the Cayley-Hamilton-Ziebur Theorem
Consider the case 1 = 2, because the proof details are similar in higher dimensions.

r’+ar+ag=0 Expanded characteristic equation
A2+ aA+agl =0 Cayley-Hamilton matrix equation
A%G + a; A+ aoii = 0 Right-multiply by & = (t)

u’ = Au’' = A% Differentiate i’ = Aud

i + a i + agii = 0 Replace A%d — d”, Ad — @’

Then the components x(t), y(t) of u(t) satisfy the two differential equations

m/,(t) + alm’(t) + aga:(t) = 0,
y"(t) + a1y’ (t) + aoy(t) = O.

This system implies that the components of @(¢) are solutions of the second order DE with characteristic equa-
tion det(A — rI) = 0.



Cayley-Hamilton-Ziebur Method

The Cayley-Hamilton-Ziebur Method for i’ = Aud

Let atom,, ..., atom,, denote the Euler solution atoms constructed from the 7th order
characteristic equation det(A — 7I) = 0 by Euler’s Theorem. The solution of

u = Ad
is given for some constant vectors dq, ..., d,, by the equation

G(t) = (atom;)d; + - - - + (atom,,)d,

Warning: The vectors dy, ..., d,, are not arbitrary; they depend on the 7 initial conditions
’U,k(O) = Ck,k = 1,...,7’1,.



Cayley-Hamilton-Ziebur Method Conclusions

—

e Solving i’ = A is reduced to finding the constant vectors dq, ..., d,,.

e The vectors Jj are not arbitrary. They are uniquely determined by A and 1 (0)!
A general method to find them is to differentiate the equation

t(t) = (atom,)d; + - - - + (atom,)d,

n — 1 times, then set ¢ = 0 and replace G®(0) by A*T(0) [because & =
A, i’ = Aud = AAAW, etc]. The resulting n equations in vector unknowns
d,...,d, can be solved by elimination.

e If all atoms constructed are base atoms constructed from real roots, then each dj 1S a

constant multiple of a real eigenvector of A. Atom €™ corresponds to the eigenpair
equation AV = rv.



A 2 X 2 Illustration

) — ]- 2 — — _]-
Letssolveu’:(2 1>u, u(O)z( 2).

The characteristic polynomial of the non-triangular matrix A = ( ; i )

=1—-7r)Y—4=(r+1)(r—3).

1—7 2
2 1—7r

Euler’s theorem implies solution atoms are e %, e?'.

Then W is a vector linear combination of the solution atoms,

U= e_tdl —|— estdgo

1S



How to Find 81’1 and 52

We solve for vectors al, &2 in the equation

i = e 'd, + e*d,.
Advice: Defined, = ( _; > Differentiate the above relation. Replace U’ via i/ =
AT, then set £ = 0 and replace @(0) by d, in the two formulas to obtain the relations

ao eoal —1— 6052
Ado = —eoal + 3€Od2

We solve for 51, 32 by elimination. Adding the equations gives 81’0 + A&O = 4&2 and

then a:o = ( _é ) implies

= = < —3/2
d1:%0—iAd0:( 3§2)a
= = = 1/2
d2:i0+iA O:<1§2>°



Summary of the 2 X 2 Illustration

The solution of the dynamical system

- (37)n w0 ()

is a vector linear combination of solution atoms e, €' given by the equation
— ¢ —3/2 1/2
— ot 3t
u—e ( 3/2>—|—e <1/2>.

Each vector appearing in the formula is a scalar multiple of an eigenvector, because eigen-
values —1, 3 are real and distinct. The simplified eigenpairs are

() (1),

Eigenpairs for Free




A Matrix Method for Finding al and 32

The Cayley-Hamilton-Ziebur Method produces a unique solution for 31, 32 because the
coefficient matrix
e e°
—e? 3e°
is exactly the Wronskian W of the basis of atoms e %, €' evaluated at £ = 0. This same

fact applies no matter the number of coefficients dq, do, ... to be determined.

Let dy = u(0), the initial condition. The answer for d; and d can be written in matrix
form in terms of the transpose W7 of the Wronskian matrix as

(di|ds) = (do|Ado)(WT)™™.

Symbol ( A|B) is the augmented matrix of column vecotrs A, B.



Solving a 2 X 2 Initial Value Problem by the Matrix Method

i — Afl, ﬁ(O)=<_;>, A:(; i)

endy = (1), 4= (1 2) <—;)=(1g>and
- (1) ((43)) (1)

) . Then the solution of the initial value problem is
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Other Representations of the Solution

Let y1(t), ..., Yyn(t) be a solution basis for the nth order linear homogeneous constant-
coefficient differential equation whose characteristic equation is det(A — rI) = 0.

Consider the solution basis atom;, atoms,, ..., atom,,. Each atom is a linear combina-
tion of ¥4, ..., ¥,. Replacing the atoms in the formula

i(t) = (atom,)d; + - - - + (atom,)d,

—

by these linear combinations implies there are constant vectors D+, ..., D,, such that

i(t) = yi(£)Dy + - -+ + yu(t)D,,



Another General Solution of i’ = Aud

Theorem 3 (General Solution) ~
The unique solution of @’ = A, @W(0) = dy is

U(t) = ¢d1(t)to + @a(t) Aty + - - - + P, (t) A" iy

where ¢4, ..., @, are linear combinations of atoms constructed from roots of the
characteristic equation det(A — rI) = 0, such that

Wronskian(¢1(t), ..., ¢.(t))|,_, = 1.



Proof of the theorem

Proof: Details will be given for n = 3. The details for arbitrary matrix dimension = is a routine modification
of this proof. The Wronskian condition implies ¢1, ¢2, ¢3 are independent. Then each atom constructed from
the characteristic equation is a linear combination of ¢1, ¢2, ¢3. It follows that the unique solution @ can be
written for some vectors 31, 32, 53 as

(t) = ¢1(t)d1 + ¢2(t)dz + Ps(t)ds.

=/

Differentiate this equation twice and then set ¢ = 0 in all 3 equations. The relations i’ = Ad and @’/ = Ad’ =
A At imply the 3 equations

ag = ¢1(0)<:i:1 + ¢2(0)(§1:2 + ¢3(0)<:1:3

Adg = ¢1(0)d1 + ¢5(0)dz + ¢5(0)d3

A%dg = ¢7(0)d1 + ¢5(0)d2 + ¢F(0)ds

Because the Wronskian is the identity matrix I, then these equations reduce to
ao = 1&1 + 0&2 + O(_ig
Ady = 0d; + 1d» + 0ds
A%dy, = 0d; + 0ds + 1ds

which implies 31 = 50, 32 = Aao, 53 = Azao.
The claimed formula for w(¢) is established and the proof is complete.



Change of Basis Equation

Illustrated here is the change of basis formula for 7 = 3. The formula for general 1 is
similar.
Let 1 (t), d2(t), d3(t) denote the linear combinations of atoms obtained from the vector
formula

(P1(t), Pa(t), Pps(t)) = (atom(t), atom,(t), atoms(t)) C~*
where

C' = Wronskian(atom,, atom,, atom;) (0).

The solutions ¢;(t), @2(t), ¢3(t) are called the principal solutions of the linear ho-
mogeneous constant-coefficient differential equation constructed from the characteristic
equation det(A — rI) = 0. They satisfy the initial conditions

Wronskian (¢, ¢2, ¢3)(0) = I.



