Theory of Equations

Main Theorems and Methods

The topics apply to root-finding and factorization of any polynomial.
Example. Solve $x^{3}+3 x^{2}+2 x=0$ for $x=0,-1,-2$ and then factor the polynomial into linear factors $x,(x+1),(x+2)$.

Quadratic $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}=\mathbf{0}$, http://en.wikipedia.org/wiki/Quadratic_equation Long Division Algorithm, http://en.wikipedia.org/wiki/Polynomial_long_division Descartes' Rule of Signs, http://en.wikipedia.org/wiki/Descartes' rule_of_signs Factor Theorem and Root Theorem, http://en.wikipedia.org/wiki/Factor_theorem Sum and Product of the Roots, http://en.wikipedia.org/wiki/Vieta's_formulas Rational Root Theorem, http://en.wikipedia.org/wiki/Rational_root_theorem

Quadratic Equations

The second order polynomial equation

$$
a x^{2}+b x+c=0
$$

can be solved by the following methods, illustrated in detail in the WikiHow link http://www.wikihow.com/Factor-Second-Degree-Polynomials-(Quadratic-Equations)

Inverse FOIL Method, e.g., $x^{2}+3 x+2=(x+2)(x+1)$ based on guessing linear factors $(x+2),(x+1)$, then test with FOIL expansion.
Difference of Squares, using identity $\boldsymbol{A}^{2}-\boldsymbol{B}^{2}=(\boldsymbol{A}-\boldsymbol{B})(\boldsymbol{A}+\boldsymbol{B})$.
Complete the Square, using identity $\boldsymbol{u}^{2}+\boldsymbol{B u}=\left(\boldsymbol{u}+\frac{B}{2}\right)^{2}-\left(\frac{B}{2}\right)^{2}$.
Quadratic Formula, $x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$.

Cubic Equations

Cardano provided formulas in 1545 to solve any cubic equation

$$
a x^{3}+b x^{2}+c x+d=0
$$

The formulas can be found at the link https://proofwiki.org/wiki/Cardano's_Formula, although computer algebra systems provide an easier interface.

A number of simple higher order equations can be solved by using the theory of equations. An illustration:

$$
x^{3}-3 x-2=0
$$

First, rational roots are tried from the list $\pm 1, \pm 2$ predicted by the Rational Root Theorem. The first root found is $\boldsymbol{x}=\mathbf{- 1}$. The Factor Theorem implies $\boldsymbol{x}-(-\mathbf{1})$ is a factor. Then the Division Algorithm applies: $\frac{x^{3}-3 x-2}{x+1}=x^{2}-x-2$. This quadratic is factored via Inverse FOIL: $(x+1)(x-2)$. Then the final factorization is

$$
x^{3}-3 x-2=(x+1)(x+1)(x-2)
$$

The roots are $-1,-1,2$.

