
Systems of Differential Equations
The Eigenanalysis Method

• First Order 2× 2 Systems x′ = Ax

• First Order 3× 3 Systems x′ = Ax

• Second Order 3× 3 Systems x′′ = Ax

• Vector-Matrix Form of the Solution of x′ = Ax

• Four Methods for Solving a System x′ = Ax



The Eigenanalysis Method for First Order 2× 2 Systems
Suppose thatA is 2× 2 real and has eigenpairs

(λ1, v1), (λ2, v2),

with v1, v2 independent. The eigenvalues λ1, λ2 can be both real. Also, they can be a
complex conjugate pair λ1 = λ2 = a+ ib with b > 0.

Theorem 1 (Eigenanalysis Method)
The general solution of x′ = Ax is

x(t) = c1e
λ1tv1 + c2e

λ2tv2.



Solving 2× 2 Systems x′ = Ax with Complex Eigenvalues

If the eigenvalues are complex conjugates, then the real part w1 and the imaginary part
w2 of the solution eλ1tv1 are independent solutions of the differential equation. Then the
general solution in real form is given by the relation

x(t) = c1w1(t) + c2w2(t).



The Eigenanalysis Method for First Order 3× 3 Systems

Suppose thatA is 3× 3 real and has eigenpairs

(λ1, v1), (λ2, v2), (λ3, v3),

with v1, v2, v3 independent. The eigenvaluesλ1, λ2, λ3 can be all real. Also, there can be
one real eigenvalue λ3 and a complex conjugate pair of eigenvalues λ1 = λ2 = a+ ib
with b > 0.

Theorem 2 (Eigenanalysis Method)
The general solution of x′ = Ax with 3× 3 real A can be written as

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + c3e
λ3tv3.



Solving 3× 3 Systems x′ = Ax with Complex Eigenvalues

If there are complex eigenvalues λ1 = λ2, then the real general solution is expressed in
terms of independent solutions

w1 = Re(eλ1tv1), w2 = Im(eλ1tv1)

as the linear combination

x(t) = c1w1(t) + c2w2(t) + c3e
λ3tv3.



The Eigenanalysis Method for Second Order Systems

Theorem 3 (Second Order Systems)
Let A be real and 3× 3 with three negative eigenvalues λ1 = −ω2

1, λ2 = −ω2
2,

λ3 = −ω2
3. Let the eigenpairs of A be listed as

(λ1, v1), (λ2, v2), (λ3, v3).

Then the general solution of the second order system x′′(t) = Ax(t) is

x(t) =

(
a1 cosω1t+ b1

sinω1t

ω1

)
v1

+

(
a2 cosω2t+ b2

sinω2t

ω2

)
v2

+

(
a3 cosω3t+ b3

sinω3t

ω3

)
v3



Vector-Matrix Form of the Solution of x′ = Ax

The solution of x′ = Ax in the 3× 3 case is written in vector-matrix form

x(t) = aug(v1, v2, v3)

 eλ1t 0 0
0 eλ2t 0
0 0 eλ3t

 c1c2
c3

 .
This formula is normally used when the eigenpairs are real.



Complex Eigenvalues for a 2× 2 System

When there is a complex conjugate pair of eigenvalues λ1 = λ2 = a + ib, b > 0,
then it is possible to extract a real solution x from the complex formula and report a real
solution. The work can be organized more efficiently using the matrix product

x(t) = eat aug(Re(v1), Im(v1))

(
cos bt sin bt
− sin bt cos bt

)(
c1
c2

)
.



Complex Eigenvalues for a 3× 3 System

When there is a complex conjugate pair of eigenvalues λ1 = λ2 = a+ ib, b > 0, then
a real solution x can be extracted from the complex formula to report a real solution. The
work is organized using the matrix product

x(t) = aug(Re(v1), Im(v1), v3)

 eat cos bt eat sin bt 0
−eat sin bt eat cos bt 0

0 0 eλ3t

 c1c2
c3

 .



Four Methods for Solving a 2× 2 System u′ = Au

1. First-order method. If A is diagonal, then use growth-decay methods. If A is trian-
gular, then use the linear integrating factor method.

2. Cayley-Hamilton-Ziebur method. IfA is not diagonal, and a12 6= 0, then u1(t) is
a linear combination of the atoms constructed from the roots r of det(A−rI) = 0.
Solution u2(t) is found from the system by solving for u2 in terms of u1 and u′1.

3. Eigenanalysis method. Assume A has eigenpairs (λ1, v1), (λ2, v2) with v1, v2

independent. Then u(t) = c1e
λ1tv1 + c2e

λ2tv2.

4. Resolvent method. In Laplace notation, u(t) = L−1 ((sI −A)−1u(0)). The
inverse of C = sI − A is found from the formula C−1 = adj(C)/ det(C).
Cramer’s Rule can replace the matrix inversion method.



Four Methods for Solving an n× n System u′ = Au

1. First-order method. If A is diagonal, then use growth-decay methods. If A is trian-
gular, then use the linear integrating factor method.

2. Cayley-Hamilton-Ziebur method. The solution u(t) is a linear combination of the
atoms constructed from the roots r of det(A− rI) = 0,

u(t) = (atom1)~d1 + · · ·+ (atomn)~dn.

To solve for the constant vectors ~dj, differentiate the formula n − 1 times, then use
Aku(t) = u(k+1)(t) and set t = 0, to obtain a system for ~d1, . . . , ~dn.

3. Eigenanalysis method. Assume A has eigenpairs (λ1, v1), . . . , (λn, vn) with v1,
. . . , vn independent. Then u(t) = c1e

λ1tv1 + · · ·+ cne
λntvn.

4. Resolvent method. In Laplace notation, u(t) = L−1 ((sI −A)−1u(0)). The
inverse of C = sI − A is found from the formula C−1 = adj(C)/ det(C).
Cramer’s Rule can replace the matrix inversion method.


