Sample Quiz 4

Sample Quiz 4, Problem 1. Picard’s Theorem and RLC-Circuit Models

Picard-Lindelöf Theorem. Let \(\vec{f}(x, \vec{y}) \) be defined for \(|x - x_0| \leq h, \|\vec{y} - \vec{y}_0\| \leq k \), with \(\vec{f} \) and \(\frac{\partial \vec{f}}{\partial \vec{y}} \) continuous. Then for some constant \(H, 0 < H < h \), the problem

\[
\begin{cases}
\vec{y}'(x) = \vec{f}(x, \vec{y}(x)), & |x - x_0| < H, \\
\vec{y}(x_0) = \vec{y}_0
\end{cases}
\]

has a unique solution \(\vec{y}(x) \) defined on the smaller interval \(|x - x_0| < H\).

The Problem. The second order problem

\[
\begin{cases}
\frac{d^2 u}{dx^2} + 2 \frac{du}{dx} + 5u = 60 \sin(20x), \\
u(0) = 1, \\
u'(0) = 0
\end{cases}
\]

(1)

is an RLC-circuit charge model, in which the variables have been changed. The variables are time \(x \) in seconds and charge \(u(x) \) in coulombs. Coefficients in the equation represent an inductor \(L = 1 \text{ H} \), a resistor \(R = 2 \text{ Ω} \), a capacitor \(C = 0.2 \text{ F} \) and a voltage input \(E(x) = 60 \sin(20x) \).

The several parts below detail how to convert the scalar initial value problem into a vector problem, to which Picard’s vector theorem applies. Please fill in the missing details.

(a) The conversion uses the position-velocity substitution \(y_1 = u(x), y_2 = u'(x) \), where \(y_1, y_2 \) are the invented components of vector \(\vec{y} \). Then the initial data \(u(0) = 1, u'(0) = 0 \) converts to the vector initial data

\[
\vec{y}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
\]

(b) Differentiate the equations \(y_1 = u(x), y_2 = u'(x) \) in order to find the scalar system of two differential equations, known as a dynamical system:

\[
y_1' = y_2, \quad y_2' = -5y_1 - 2y_2 + 60 \sin(20x).
\]

(c) The derivative of vector function \(\vec{y}(x) \) is written \(\vec{y}'(x) \) or \(\frac{d\vec{y}}{dx}(x) \). It is obtained by componentwise differentiation: \(\vec{y}'(x) = \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} \). The vector differential equation model of scalar system (1) is

\[
\begin{cases}
\vec{y}'(x) = \begin{pmatrix} 0 & 1 \\ -5 & -2 \end{pmatrix} \vec{y}(x) + \begin{pmatrix} 0 \\ 60 \sin(20x) \end{pmatrix}, \\
\vec{y}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
\end{cases}
\]

(2)

(d) System (2) fits the hypothesis of Picard’s theorem, using symbols

\[
\vec{f}(x, \vec{y}) = \begin{pmatrix} 0 & 1 \\ -5 & -2 \end{pmatrix} \vec{y}(x) + \begin{pmatrix} 0 \\ 60 \sin(20x) \end{pmatrix}, \quad \vec{y}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
\]

The components of vector function \(\vec{f} \) are continuously differentiable in variables \(x, y_1, y_2 \), therefore \(\vec{f} \) and \(\frac{\partial \vec{f}}{\partial \vec{y}} \) are continuous.
Solutions to Problem 1

(a) \(\vec{y}(0) = \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} u(0) \\ u'(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \).

(b) Differentiate, \(y'_1 = u'(x) = y_2 \) and \(y'_2 = u''(x) \). Isolate \(u'' \) left in the equation \(u'' + 2u' + 5u = 60 \sin(20x) \), then reduce \(y'_2 = u''(x) \) into \(y'_2 = -2u' - 5u + 60 \sin(20x) = -2y_2 - 5y_1 + 60 \sin(20x) \).

(c) Initial data \(\vec{y}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) was derived in part (a). The differential equation is derived from the scalar dynamical system in part (b), as follows.

\[
\begin{aligned}
\vec{y}' &= \begin{pmatrix} y'_1 \\ y'_2 \end{pmatrix} \\
&= \begin{pmatrix} y_2 \\ -5y_1 - 2y_2 + 60 \sin(20x) \end{pmatrix} \\
&= \begin{pmatrix} y_2 \\ -5y_1 - 2y_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 60 \sin(20x) \end{pmatrix} \\
&= \begin{pmatrix} 0 & 1 \\ -5 & -2 \end{pmatrix} \vec{y} + \begin{pmatrix} 0 \\ 60 \sin(20x) \end{pmatrix} \\
\end{aligned}
\]

(d) From calculus, polynomials and trigonometric function sine are infinitely differentiable. Therefore, in each of the variables \(x, y_1, y_2 \) the components of \(\vec{f} \), which are just the right sides of the dynamical system equations of part (b), are also infinitely differentiable.
Sample Quiz4 Problem 2. The velocity of a crossbow arrow fired upward from the ground is given at different times in the following table.

<table>
<thead>
<tr>
<th>Time t in seconds</th>
<th>Velocity $v(t)$ in ft/sec</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>50</td>
<td>Ground</td>
</tr>
<tr>
<td>1.413</td>
<td>0</td>
<td>Maximum</td>
</tr>
<tr>
<td>2.980</td>
<td>-45</td>
<td>Near Ground Impact</td>
</tr>
</tbody>
</table>

(a) The velocity can be approximated by a quadratic polynomial

$$v(t) = at^2 + bt + c$$

which reproduces the table data. Find three equations for the coefficients a, b, c. Then solve for them to obtain $a \approx 2.238$, $b \approx -38.55$, $c = 50$.

(b) Assume a drag model $v' = -32 - \rho v$. Substitute the polynomial answer of (a) into this differential equation, then substitute $t = 0$ and solve for $\rho \approx 0.131$.

(c) Solve the model $w' = -32 - \rho w$, $w(0) = 50$ with $\rho = 0.131$.

(d) Compare $w(t)$ and $v(t)$ in a plot. Comment on the plot and what it means.

References. Edwards-Penney sections 2.3, 3.1, 3.2. Course documents on Linear algebraic equations and Newton kinematics.

Sample Quiz4 Extra Credit Problem 3. Consider the system of differential equations

\[
\begin{align*}
x'_1 &= -\frac{1}{6}x_1 + \frac{1}{6}x_3, \\
x'_2 &= \frac{1}{6}x_1 - \frac{1}{3}x_2, \\
x'_3 &= \frac{1}{3}x_2 - \frac{1}{6}x_3,
\end{align*}
\]

for the amounts x_1, x_2, x_3 of salt in recirculating brine tanks, as in the figure:

Recirculating Brine Tanks A, B, C

The volumes are 60, 30, 60 for A, B, C, respectively.

The steady-state salt amounts in the three tanks are found by formally setting $x'_1 = x'_2 = x'_3 = 0$ and then solving for the symbols x_1, x_2, x_3. Solve the corresponding linear system of algebraic equations to obtain the answer $x_1 = x_3 = 2c$, $x_2 = c$, which means the total amount of salt is uniformly distributed in the tanks in ratio 2 : 1 : 2.

References. Edwards-Penney sections 3.1, 3.2, 7.3 Figure 5. Course documents on Linear algebraic equations and Systems and Brine Tanks.