Sample Quiz3 Problem 1. A graphic called a phase diagram displays the behavior of all solutions of \(u' = F(u) \). A phase line diagram is an abbreviation for a direction field on the vertical axis (\(u\)-axis). It consists of equilibrium points and signs of \(F(u) \) between equilibria. A phase diagram can be created solely from a phase line diagram, using just three drawing rules:

1. Solutions don’t cross.
2. Equilibrium solutions are horizontal lines \(u = c \). All other solutions are increasing or decreasing.
3. A solution curve can be moved rigidly left or right to create another solution curve.

Use these tools on the equation \(u' = u(u^2 - 4) \) to make a phase line diagram, and then make a phase diagram with at least 8 threaded solutions. Label the equilibria as stable, unstable, funnel, spout, node.

References. Edwards-Penney section 2.2. Course document on Stability.

Sample Quiz3 Problem 2. An autonomous differential equation \(\frac{dy}{dx} = F(x) \) with initial condition \(y(0) = y_0 \) has a formal solution

\[
y(x) = y_0 + \int_0^x F(u)du.
\]

The integral may not be solvable by calculus methods. In this case, the integral is evaluated numerically to compute \(y(x) \) or to plot a graphic. There are three basic numerical methods that apply, the rectangular rule (RECT), the trapezoidal rule (TRAP) and Simpson’s rule (SIMP).

Apply the three methods for \(F(x) = \sin(x^2) \) and \(y_0 = 0 \) using step size \(h = 0.2 \) from \(x = 0 \) to \(x = 1 \). Then fill in the blanks in the following table. Use technology if it saves time. Lastly, compare the four data sets in a plot, using technology.

<table>
<thead>
<tr>
<th>(x)-values</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)-to 10 digits</td>
<td>0.0</td>
<td>0.0026663619</td>
<td>0.0212943557</td>
<td>0.07133622797</td>
<td>0.1657380596</td>
<td>0.3102683017</td>
</tr>
<tr>
<td>(y)-RECT values</td>
<td>0.0</td>
<td>0.0</td>
<td>0.007997866838</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y)-TRAP values</td>
<td>0.0</td>
<td></td>
<td>0.02392968750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y)-SIMP values</td>
<td>0.0</td>
<td></td>
<td>0.02129368017</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References. Edwards-Penney Sections 2.4, 2.5, 2.6, because methods Euler, Modified Euler and RK4 reduce to RECT, TRAP, SIMP methods when \(f(x, y) \) is independent of \(y \), i.e., an equation \(y' = F(x) \). Course document on numerical solution of \(y' = F(x) \) RECT, TRAP, SIMP methods. Wolfram Alpha at http://www.wolframalpha.com/ can do the RECT rule and graphics with input string

\[
\text{integrate } \sin(x^2) \text{ using left endpoint method with interval width 0.2 from } x=0 \text{ to } x=1
\]