Example 1: Solve: (1) $y^{\prime \prime}=-9.8$, (2) $y^{\prime \prime}=-0.04 y^{\prime}-9.8$, both with $y(0)=0, y^{\prime}(0)=49$.
Answers: (1) $y=-9.8 t^{2} / 2+49 t$; (2) $y=7350-245 t-7350 e^{-t / 25}$.
Example 2: Let $w=v \sqrt{\rho / g}$ and $p=\frac{1}{\sqrt{g \rho}}$ to replace Newton's quadratic drag model $v^{\prime}=$ $-g-\rho v|v|$ by $p w^{\prime}=-1-w|w|$. Explain rise model $p w^{\prime}=-1-w^{2}$ and fall model $p w^{\prime}=-1+w^{2}$. See Exercise 2.3-13.
Example 3: Solve $-p w^{\prime}=-w^{2}+1$ and $-p w^{\prime}=w^{2}+1$ as separable equations. See the previous example. Answers: $w(t)=\tanh \left(c_{1}-t / p\right)$ and $w(t)=\tan \left(c_{2}-t / p\right)$
Example 4: Verify rise time 4.6 and fall time 4.8 for Newton's quadratic drag model $v^{\prime}=$ $-9.8-0.0011 v|v|, v(0)=49$. Use textbook 2.3 formulas or the previous two examples.
Example 5: Find the point $r=r^{*}$ of zero acceleration in the Jules Verne equation $r^{\prime \prime}=$ $-\frac{G m_{1}}{\left(R_{1}+r\right)^{2}}+\frac{G m_{2}}{\left(R_{3}-r\right)^{2}}$. The answer has symbols. Then calculate $r^{*} \approx 339,620,820$ meters for the earth-moon problem. Reference:
http://www.math.utah.edu/~gustafso/s2015/2250/julesVerneDE2008.pdf
Example 6: Find the exact solution to $y^{\prime}=x+y / 5, y(0)=-3$. Then find $y(5)$. ANSWER: $y=22 e^{x / 5}-5 x-25$ by the linear integrating factor method. Then $y(5)=9.8022002$.
Example 7: Apply Euler's method to $y^{\prime}=x+y / 5, y(0)=-3$ with target $x^{*}=1$ and step size $h=$ 0.2. ANSWERS: Pairs $(0,-3),(0.2,-3.12),(0.4,-3.205),(0.6,-3.253),(0.8,-3.253),(1,-3.234)$.

Example 8: Falling baseball. Given $v^{\prime}=32-0.16 v, v(0)=0$, find Euler's method data points with target $x^{*}=10$, step size $h=1$.
ANSWER: $(0,0),(1,32),(2,59),(3,81),(4,100),(5,116),(6,130),(7,141),(8,150),(9,158),(10,165)$.
Example 9: Solve $y^{\prime}=x+y, y(0)=1$. Then evaluate $y(1)$. ANSWER: $y=2 e^{x}-x-1$, $y(1)=3.4365637$.
Example 10: Apply Improved Euler to $y^{\prime}=x+y, y(0)=1$ with target $x^{*}=1.0$ and step size $h=0.1$. Compare to the Euler method for step sizes $\mathrm{h}=0.1$ and $\mathrm{h}=0.005$. ANSWER: Figure 2.5.4.

Example 11: Apply Improved Euler to $y^{\prime}=(8-y) y / 3, y(0)=1$ with target $x^{*}=5.0$ and various step sizes. ANSWER: Figure 2.5.7 and Figure 2.5.8.
Example 12: Apply RK4 to $y^{\prime}=x+y, y(0)=1$ with target $x^{*}=1.0$ using step size $h=0.5$. Compare with the exact solution $y=2 e^{x}-x-1$ at $x=1$.
ANSWER: The exact value is $y(1)=3.4365637$. The data pairs are $(0,1),(0.5,1.7969),(1.0,3.4347)$ for step size $\mathrm{h}=0.1$. See Figure 2.6.1 and Figure 2.6.2.
Example 13: Skydiver problem $v^{\prime}=9.8-0.00016\left(100 v+10 v^{2}+v^{3}\right), v(0)=0$. Find the terminal speed $35.578 \mathrm{~m} / \mathrm{s}$ by roots of equations. Find the speed by RK4 methods, step sizes $h=0.2$ and $h=0.1$. Display the results in a table for $t=0$ to $t=20$ seconds. ANSWER: Figure 2.6.8.

