Week 2 Examples

Example 1: Classify as separable (S), quadrature (Q), linear (L) or none (N). (1) $y^{\prime}=3(x y)^{1 / 3}$, (2) $y^{\prime}=x y^{2}+1$, (3) $y^{\prime}=x \sin (y)$, (4) $y^{\prime}=y \sin (x)$, (5) $y^{\prime}=e^{\ln |x|}$, (6) $y^{\prime}+x y=x^{2} y$

Answers: (1) S; (2) N; (3) S; (4) S,L; (5) Q,S,L; (6) L.
Example 2: Check explicit answer $y=\left(x^{3 / 2}+c\right)^{2}$ for $y^{\prime}=3 \sqrt{x} \sqrt{y}$ on domain $x \geq 0, y \geq 0$.
Example 3: Check implicit answer $\csc (y) \cot (y)=-x^{2} / 2+c$ for $y^{\prime}=x \sin (y)$.
Example 4: Let $f(x, y)=1-x^{2}+y^{2}-x^{2} y^{2}$. In relation $f(x, y)=F(x) G(y)$, equations $f(x, 0)=F(x) G(0), f(0, y)=F(0) G(y)$ can determine F, G. Explain. Then find one pair F, G.
Example 5: Solve using the constant equation shortcut or the quadrature shortcut.
(1) $y^{\prime}+2 y=6$, (2) $2 y^{\prime}+5 y=3$, (3) $2 y^{\prime}=3$, (4) $3 y^{\prime}=5 y+\pi$.

Example 6: Solve using the integrating factor shortcut for homogeneous equations.
(1) $y^{\prime}+8 x y=0$, (2) $2 y^{\prime}+\sin (x) y=0$, (3) $x y^{\prime}+\ln |x| y=0$.

Example 7: Solve a non-separable equation using the integrating factor method.
(1) $x y^{\prime}+2 y=x^{2}$, (2) $x y^{\prime}+2 y=x$, (3) $x y^{\prime}+2 y \ln |x|=\ln |x| e^{(\ln |x|)^{2}}$.

Answers: (1) $y=x^{2} / 4+c / x^{2}$, (2) $y=x / 3+c / x^{2}$, (3) $y=\frac{1}{4} e^{(\ln |x|)^{2}}+c / e^{(\ln |x|)^{2}}$.
Example 8: Solve the brine tank model $\frac{d x}{d t}=1 / 4-x / 16, x(0)=20$.
Example 9: Solve the brine tank cascade $x^{\prime}=-x / 2, y^{\prime}=x / 2-y / 4, z^{\prime}=y / 4-z / 6$ with $x(0)=1, y(0)=-2, z(0)=1.5$. Answer: $x=e^{-t / 2}, y=-2 e^{-t / 2}, z=1.5 e^{-t / 2}$
Example 10: Find all equilibrium solutions for $\left(x^{2}+1\right) y^{\prime}=x+1-x y^{2}-y^{2}$
Example 11: Solve $y^{\prime}=(1-y) y$ by the substitution $u=y /(1-y)$.
Example 12: Solve $y^{\prime}=(1-y) y$ by partial fraction methods. Check the answer from $P^{\prime}=$ $(a-b P) P$ and the Verhulst formula $P=\frac{a P_{0}}{b P_{0}+\left(a-b P_{0}\right) e^{-a t}}$.
Example 13: Assume US population data 5.308, 23.192, 76.212 million for years 100, 1850, 1900, respectively. Find a, b in the Verhulst model $P^{\prime}=(a-b P) P$. Answer: $a=0.3155090164$, $b=0.00167716$.
Example 14: Solve $y^{\prime}=7 y(y-13), y(0)=17$. See 2.1-8.
Example 15: Draw a phase line diagram for $y^{\prime}=y(1-y)^{2}(y+1)$. See Section 2.2.
Example 16: Draw a phase diagram for $y^{\prime}=y^{2}\left(y^{2}-4\right)$. See 2.2-17.
Example 17: Justify why the direction field along a line $x=x_{0}$ is the same as the direction field along $x=0$, for any autonomous equation $y^{\prime}=F(y)$.

