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As motivation for the subject of Fourier series, we consider the ditferential

equation
d%x 5
ra + wgx = f(1), (D

which models the behavior of a mass-and-spring system with natural (circular) fre-
quency ayg, moving under the influence of an external force of magnitude f(f) per
unit mass. As we saw in Section 3.6, a particular solution of Eq. (1) can easily
be found by the method of undetermined coefficients if £ (r) is a simple harmonic
function—a sine or cosine function. For instance, the equation

d*x

=t wix = Acos ot 2

withw? # w3 has the particular solution

cos ot , 3)

Ypt)=—
@)

2

which is readily found by beginning with the trial solution x ,(£) = a cos wt.

Now suppose, more generally, that the force function f(z) in Eq. (1) is 2
linear combination of simple harmonic functions. Then, on the basis of Eq. 3)
and the analogous formula with sine in place of cosine, we can apply the principle
of superposition to construct a particular solution of Eq. (1). For example, consider
the equation

X
— + Wiy = }:A,, CoSw,t, @)




URE 9.1.1. A square-wave
ion.
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in which wyj is equal to none of the w?2. Equation (4) has the particular solution

N

(1) = Z,A—",cosw,,z, (5)
n=1% = @y

obtained by adding the solutions given in Eq. (3) comresponding to the A terms on

the right-hand side in Eq. (4).

Mechanical (and electrical) systems often involve periodic forcing functions
that are not (simply) finite linear combinations of sines and cosines. Nevertheless,
as we will soon see, any reasonably nice periodic function f (1) has a representation
as an infinite series of trigonometric terms. This fact opens the way toward solving
Eq. (1) by superposition of trigonometric “building blocks,” with the finite sum in
Egq. (5) replaced with an infinite series.

DEFINITION Periodic Function

The function f(z) defined forall¢ is said to be periodic provided that there exists
a positive number p such that

> fa+p=f0O 6)

forall ¢. The number p is then called a period of the function f.

Note that the period of a periodic function is not unique; for example, if p is
aperiod of f(r), then so are the numbers 2p, 3 p, and so on. Indeed, every positive
number is a period of any constant function.

If there exists a smallest positive number P such that f(z) is periodic with
period P, then we call P the period of f. For instance, the period of the functions
glty=cosntand i (1) = sinnt (where n is a positive integer) is 27z /7 because

2r
cosn|t+-—| = cos(nt + 2w) = cosnt
n
and (7)
) 2r . .
sinin |t 4+ — | = sin(nt +2r) =sinnt.
n

Moreover, 27 itself is a period of the functions g(t) and /1 (t). Ordinarily we will
have no need to refer to the smallest period of a function f (1) and will simply say
that f(r) has period p if p is any period of f(1).

In Section 7.5 we saw several examples of piecewise continuous periodic func-
tions. For instance, the square-wave function having the graph shown in Fig. 9.1.1
has period 277.

Because g(z) = cosnt and hi(t) = sinnt each have period 2x, any linear
combination of sines and cosines of integral multiples of 1, such as

f@) =3+ cost —sint + 5cos2r 4 17sin 3t,
has period 27r. Butevery such linear combination is continuous, so the square-wave

function cannot be expressed in such manner. In his celebrated treatise The Analytic
Theory of Heat (1822), the French scientist Joseph Fourier (1768—1830) made the
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remarkable assertion thatevery function £ (1) with period 27 can be represented by
an intfinite trigonometric series of the form

o
cly .
- -+ E (ctycosnt 4 b, sinnr). (8

n=1

(The reason for writing Ly rather than aq here witl appear shortly—when we see
that a single formula for a,, thereby includes the case n = Qaswellas n > 0.) We
will see in Section 9.2 that under rather mild restrictions on the fiunction f(1), this
is so! An infinile series of the form in (8) is called a Fourier series, and the repre-
sentation of functions by Fourier series is one of the most widely used techniques
in applied mathematics, especially for the solution of partial differential equations
(see Sections 9.5 through 9.7).

Fourier Series of Period 27 Functions

In this section we will confine our attention to functions of period 2r7. We want to
determine whatthe coefficients in the Fourier series in (8) mustbeif it is to converge
to a given function f(r) of period 2r. For this purpose we need the following
integrals, in which /m and 12 denote positive integers (Problems 27 through 29):

. .
0 ifm #£n,
/ cosmtcosntdt = . # 9)
X T ifm =
. .
. . 0 ifm #n,
/ sinrnt sinat dt = ; 7 (10)
. T ifm=n
.
/ cosmf sinntdt =0 forallm andn. (1)
[t T

These Formulas imply that the functions cossnt and sinzsir forn = 1,2, 3, ... constl:
tute a mutually orthogonal set of functions on the interval [—r. 7 ]. Two real-valued

functions n(r) and v(r ) are said to be orthogonal on the interval [a, b] provided that

2]
/ n(v(t)dr = 0. (12)

a

(The reason for the word “orthogonal” here is a certain interpretation of functions
as vectors with infinitely many values or “components.” in which the integral of
the product of two functions plays the same role as the dot product of two ordinay
vectors; recall thatu- v =0ifand only if the two vectors are orthogonal.) i

Suppose now that the piecewise continuous function /(1) of period 2 has@s
Fourier series representation

~
. ao . 3)
> f = 5-{- E {(a,ycosmt b, sinnr), (1)

m=1 [

|

in the sense that the infinile series on the right converges to the value f(7) fo"_egeg |
7. We assume in addition that, when the infinite series in Eq. (13) is multiplie i




9.1 Periodic Functions and Trigonometric Series 583

any continuous function, the resulting series can be integrated term by term. Then

the result of termwise integration of Eq. (13) itself from ! = —;mtoz =mis
1 ao 4
f@)dt = — I dt
. 2/,
oo T oo T
+ Z (a,,,/ cos mt l]t) + Z (17,,,/ sinmit dt) = 1q
m=I - m=| -

because all the trigonometric integrals vanish. Hence

(l()=l/l f(’)dt- (14)
T J-x

If we first multiply each side in Eq. (13) by cos n and then integrate termwise, the
result is

T ag T
f f(t)cosnrdt = — f cos nt dt
- 2 ).

o0 T oo bid
+ Z (a,,,/ cosmt cosmdt) + (b,,,/ sinmt cosntdl);
-T -1

m=1 m=1

it then follows from Eq. (11) that

T o T
/ f()ycosnt dt = ay, (/ cos mt cos it dr) . (15)
-~ 1 =1

n=

But Eq. (9) says that—of all the integrals (form = 1, 2, 3, .. .) on the right-hand
side in (15)—only the one for which m = r is nonzero. It follows that

14 b1
Sf(t)cosurdt =a,,/ cos’ntdr = na,,

-7 -7
so the value of the coefficient a, is

T

]
a, = — f () cosntdt. (16)
T

-7

Note that with 7z = 0, the formula in (16) reduces to Eq. (14); this explains why we
denote the constant term in the original Fourier series by %ao (rather than simply
cp). [f we multiply each side in Eq. (13) by sin af and then integrate termwise, we
find ina similar way that

l T
by, = —/ f)sinnr dt (17
TJox

(Problem 31). In short, we have found that if the series in (13) converges to f(r)
and if the termwise integrations carried out here are valid, then the coefficients in
the series must have the values given in Egs. (16) and (17). This motivates us to
define the Fourier series of a periodic function by means of these formulas, whether
or not the resulting series converges to the function (or even converges at all).
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BAAER,

FIGURE 9.1.2. Extending a
function to produce a periodic
function.

DEFINITION Fourier Series and Fourier Coefficients

Let f (1) be a piecewise continuous function of period 2r that is defined for afl
t. Then the Fourier series of f(z)isthe series

xR
> “2—0 + (@ncosnt + b, sinni), (18)

n=t

where the Fourier coefficients a,, and b, are defined by means of the formulas

] T
> a, = —j f@)cos nt dt (16)
T J-m

forn=0,1,23 ...and

] T
> b, = — f)sinnt dt (17
T

-7

forn=1213..

You may recall that the Taylor series of a function sometimes fails to converge
everywhere to the function whence it came. It is still more common that the Fourier
series of a given function sometimes fails to converge to its actual values at certain
points in the domain of the function. We will therefore write

o0
Sy~ —(? + Z(a,, cosnt -+ b,sin nt), (19)

n=I

not using an equals sign between the function and its Fourier series until we have
discussed convergence of Fourier series in Section 9.2,

Suppose that the piecewise continuous function f(r) as given initially is de-
fined only on the interval [—rz, 7r], and assume that (-7} = f (). Then we can
extend f so that its domain includes allreal numbers by means of the periodicity
condition f (1 + 2w ) = f(r) forall . We continue to denote this extension of the
original function by f,and note that it automatically has period 27 . Its graph looks
the same on every interval of the form

Cu—Dr €1 £ 2n4+

where 17 is aninteger (Fig.9.1.2). For instance, the square-wave function of Fig. 9.1 A
can be described as the period 21 function such that

-1 if—m <t <0
fley=31+1 if0O<t <7, (20)
0 iftr=—-a,0,orm.

Thus the square-wave function is the period 27 function defined on one full period
by means of Eq. (20).

We need 1o consider Fourier series of piecewise continuous functions because
many functions that appear in applications are only piecewise continuous, not om”
tinuous. Note that the integrals in Egs. (16) and (17) exist if f(1) is piecewls€
continuous, so every piecewise continuous function has a Fourier series.
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m Find the Fourier series of the square-wave function defined in Eq. (20).

Solution

Itis always a good idea to calcutate a, separately, using Eq. (14). Thus

i T 1 ] | b4
a():—/ f(l)dt:—f (=Ddt + — (+1)dt
TJ T

7 T Jo
| ]
=—(-m)+ —(mr)=0.
7 T

We split the first integral into two integrals because f(¢) is defined by different
formulas on the intervals (—m, 0) and (0, 7); the values of £(r) at the endpoints of
these intervals do not affect the vatues of the integrals.

Equation (16) yields (for n > 0)

1 T ‘ | Q0 | b4
a, = — f(tycosntdt = —f (—cosnt)dr + — / cosurdt
T Jsn T Jem T Jo

N . 171 . 7"
= — |——sinnt +— | -sinne| =0.
T i e T 0

And Eq. (17) yields
T . p0

| | br”
— f@ysinntdt = — (—sinm‘)dl—i——/ sin nt dr
T J_z T Jon T Jo

o] < d o]
= — | —cosnt + — | ——cos nf
T I n 0

2 2
—(l —cosum) = —[l = (="
na ni

bll

Thus g, = 0 forall/n =0, and

4
—  fornodd;
b, = qnx

0 forn even.

The last result follows because cos(—nr) = cos(nmr) = (—1)". With these values
of the Fourier coefficients, we obtain the Fourier series

4 innt 4 | ]
fiey~= Yy 20 =—(sint+—sin31+—-sin51+---). 1)
T =on T 3 5

Here we have introduced the useful abbreviation

(o]

> o S
nodd n==|
nodd

—for example,

Zl~1+l+]+
=1+3+3 .

srodd n
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Figure 9.1.3 shows the graphs of several of the partial sums

4 & sin@n - Dt
Sy(t) =— —
v T Z 2n—1

n=l

of the Fourier series in (21). Note that asr approaches a discontinuity of £(t) from
either side, the value of S, () tends to overshoot the limiting value of f (1)—either
-+1or—1in thiscase. This behavior of a Fourier series near a point of discontinuity
of its function is typical and is known as Gibbs’s phenomenon. - |

-1 -1

With 3ierms With 6 terms

pd

' -2x s B

-1

With I2terms With 24 terms

FIGURE9.1.3. Graphs of partial sums of the Fourier series of the square-wave
funclion (Example 1) with N = 3,6, 12, and 24 terms.

The following integral formulas, easily derived by integration by parts, are
useful in computing Fourier series of polynomial functions:

fu cosi du =cos u +usinu4C: 1)
f u sinu du = siny — u cosu + C; (23)
/u" cosit du = 1" sin -n/u"”lsin udu; @9
/ u" sinu du = —u" cos u —}—/zfu”‘l cos udu. (29)

4
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CIul WAl Find the Fourier series of the period 27 function that is defined in one period to be

0 if—mr <t s

~

f) = if0st <73 (26)

ifr = £.

SV

The graph of fisshownin Fig. 9.1.4.

Solution The values of f(&x) are irrelevant because they have no etfect on the values of
the integrals that yield the Fourier coefficicnts. Because f(t) = 0 on the interval

o ,T (—m,0), each integral froms = — to7 = r may bereplaced with an integrat from
?3"/: h 7/; ﬁ / 1 = 0toz =m. Equations (14), (16), and (17) therefore give
T

-2 4 61

-

_ Jrlt—l 112”_:r_
GURE9.14. The periodic o=zl TR, T Y
ction of Example 2.

[ 1 o u
a, = —f tcosnt dt = — / iwcostdu <u =nt, 1= —)
T Jo n=mw Jg I

1 na
= —— {cos 1=+ wsin u]o (by Eq. 22))

n-=mw

ety -

n2mr

Consequently, a,, =0 if n is even and n = 2;

2
ay = ——3 if nisodd.
nm
Next,
1 a l ng
b,= —/ tsinntdt = — / usin udn
T Jo n-m Jp
I . nr
= Tl:sm =1 cosu] (by Eq. (20))
nm 0
1
= ——COS NI,
n
Thus
(_ l)n+]
[, = ——— foraltn 2 1.

n
Therefore, the Fourier series of f(r) is

fay ~ T 2 cos nt N 2, (= 1)yrt! sinm. o
4

2
n odd n n=I n
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If f(r)isa function of period 27, it is readily verified (Problem 30) that

7

-7

a+27
fu)dt= f Slydr (28)

a

forall @. That is. the integral of f(r) over one interval of length 27 is equal to its
integrat over any other suchinterval. In case f(1) is given explicitly on the interval
[0.27] rather than on [—7.7[. it may be more convenient to compute its Fourier

coefficients as

and

m Problems

In Problems I through 10, skeich the graph of the funciien |

defined for all t by the given formula, and determine whether

itis periodic. If so, find its smallest period.

[

© N

Sr) =sin3y 2. f(r)y=-cos 2T!
M it
) =cos - 4. f(r)y=sin TT
f) =1ant” 6. f(7)=cot 2r:
f ) = cosh ¥ 8. f(t)=sinhm1
f) = |siny) 10. f(r)=cos?3z

In Problems 11 through 26, the values of a period 27t function
Sy inone full period are given. Sketch several periocls of its
graph and find its Fourier series.

1. fo)=1.-7 18w
+3. -7 <1 S0
12. f() = =
s -3, O<r S
0. -7 <120
13. f(») = =
ro 1. 0<1Ex
3, -7 <150
14, f(1) = =
Fo -2, O<r s
15. fa)y=1, —-m <1 <7
16. f(N=1.0<1t <27
17 fy=}.—-7n £1<nm
am+1, -7 <t
18. f(1) = ‘ -
Fn T—1, O<rZa
T4+t -7 St <O
19. /(1) = =
S0 0, 01 <
0. -7 <1 <—7/2:
20, f(n=491. —a2<1<7a/2:
0. /2 <1Sw

27
a4, = — frycosnt dt (299)
T Jo
1 27
b, = —/ frysinnt dr. (29b)
T Jo
200 fFu)=r . —7 <12
22, Fuy=1 .01 <2z
0. —T<I120:
2. fuy=4, Tl
1. 0sr=<m
4. fuy=|sinz|. -7 =21 <7
2. fy=coy' 2, —n $1<
0. —1 £150:
2. fiy =1 Tel=
sin 1, 0Lrsr
27. Verity Eq. (9). (Suggestion: Use the trigonometric iden-

28.
29.
30.

3L

lity

cosA cos B = % [cos(A + B) +cos(A — B)])
Verity Eq. (10).
Verify Eq. (1 1).

Lel f(7) be a piecewise continuous function with period
P. (a) Supposethat 0 =a < P. Substitute st =1 — P L0

show that
a4-P a
/ Sydr =/ fyde.
P 1]

Conclude that

ad-r P
/ _/'(.l)lll=/ fu)de.
14 0

(b) Given A, choose # so that A = nP +a with
0 £ a < P.Then substitute v = 1 — n P 10 show that

AP a4 P
[ S )de= / fydr = fyde.
JA Ja JO

Multiply each side in Eq.(13) by sinsnr and 1hen integrat®

term by term to derive Eq. (17).

4

l
'J
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E General Fourier Series and Convergence

In Section 9.1 we defined the Fourier series of a periodic function of period 2.
Now let f(1) be a function that is piecewise continuous for all 1 and has arbitrary
period P > 0. We wrile

P =12L. Q)]

so L is the half-period of the function f. Let us define the function g as follows:

L
g)= 1 (J) )
T

for alt n. Then

( Lu ( Lu
gu+2r)=f (— +2L) = f (T) = g(m).

T

and hence g(i¢) is also periodic and has period 277. Consequently, ¢ has the Fourier
series

(a9
gy .
gy ~ ?-}— 5 (a,, cos it + b, sinrur) 3)

n=l

with Fourier coefficients

l I
, = — f gw)cosnudu (4a)
7{ i
and
l a
b, = —f g(ie)sin medu. (4b)
T J .
If we now write
Lu Tl .
[=—, u=—. f)=gQ), ()
b4 L
then
Tt a > nrt nrrt
f(f) :g(_Z)W—’Z_)-}_;((lllcog-f—’_l)”?)’ (6)

\

and then substitution of (5)in (4} yields

a N L)ycosnudu i L, du [4
4 g

T Jesz

lf" Tt . gmz't I
— — ) cos — dt.
L), S\ L

I
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Therefore,
L ni
Iy = — t —dt; (7
« " _Lf( )cos T d )
similarly,
1 [t !
by= 1 f_ S(sin "Z dr. @®)

This computation motivates the following definition of the Fourier series of a peri-
odic function of period 2.L.

DEFINITION Fourier Series and Fourier Coefficients

Let f(z) be a piecewise continuous function of period 2 L that is defined for all
1. Then the Fourier series of f (1) is the series

n nmt

ap It
> f(t) ~ 7 + Z <fl” Ccos T + b,, sin T) s (6)

n=1

where the Fourier coefficients {4,,}5° and {b,}{° are defined tobe

1 £ t
> a='7 ]_ Floreos % dr @)
and

1 (L 1
> bu=1 /_L £(#)sin %d!. 8

With n = 0, Eq. (7) takes the simple form

1 L
a()IZLL f(l)(/f, (9)

which demonstrates that the constant term %ao in the Fourier series of f is simply

the average value of f() on theinterval [-L, L].

As a consequence of Problem 30 of Section 9.1, we may evaluate the inlegrﬂls
in(7) and (8) over any other interval of length 2L. For instance, if f(r) is givenbya
single formula for 0 < r < 2L, it may be more convenient to compute the integrals

1 2L [
a, = z‘]o f(t)cos ﬂg— dr (10a)

and

1 2L |
b, = z/ﬂ f(t)sin i% di. (IOb)



Solution

RE9.2.1. The
:-wave of Example 1.
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Figure 9.2.1 shows the graph of a square-wave function with period 4. Find its
Fourier series.

Here, L = 2; also, f(1) = —1if =2 <t < 0, while f(z) = 1ifO <1 < 2. Hence
Egs. (7), (8), and (9) yield

1 2 1 0 1 2
ao=§/_2f(t)dt=§ 2(—1)(11%-5/.0 (+1)ydt =0,

0

. | mrt{ 1 2 | ‘nrn[
(1,,—-5 2(— )cosTcH—E ; (+ )CO&TH

and

; lfo( )si nirt i+ 1 fz("H) .t dr
by = = —1)sin — d - sin ——
=2 ), 2 2 o "3

4 e
— ifn is odd,
0 if n is even.

Thus the Fourier series is

4 1 t
FO~=3 —sin e (112)
nuodd,l 2
4 qinm+l . 37rr+ls_ 571t+ (1 1b)
=—|[sin— + - sin—=—+ —sin—+- - | .
- 7 TadTT Ty .

The Convergence Theorem

e

We want to impose conditions on the periodic function f that are enough to guar-
antee thatits Fourier series actually converges to f (1) at least at those values of # at
which [ is continuous. Recall that the function f is said to be piecewise continuious
on the interval[a, ) provided that there is a finite partition of [a. 5] with endpoints

a=lh<th<h< -<lh-_1<l,=Db

suchthat

L. fiscontinuous oneach open interval ti_; < t < r;; and

2. At each endpoint 5; of such a subinterval the limit of f(¢), as # approaches #;
from within the subinterval, exists and is finite.
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Jum

fah

/ .

g '

FIGURE 9.2.2. A finite jump
discontinuity.

The function f is called piecewise continuons for all ¢ if it is piecewise con-
tinuous on every bounded interval. It follows that a piecewise continuous function
is continuous except possibly at isolated points, and that at each such point of dis-
continuity, the one-sided limits

fO+) = lim fGy and f(-)= lim f(u) (12)

w1t w—1"
both exist and are finite. Thus a piecewise continuous function has only isolated

The square-wave and sawtooth functions that we saw in Chapter 7 are ty pical
examples of periodic piecewise continuous functions. The function f(r) = tant
is a periodic function (of period ) that is not piecewise continuous because it has
infinite discontinuities. The function ¢ (1) = sin(l/1) is not piecewise continuous
on [—1.1]because its one-sided limits at z = 0 do not exist. The function

r ift=— (nan integer),
) = n =

0O otherwise

on[—1, 1 ]has one-sided limits everywhere, but is not piecewise continuous because
its discontinuities are not isolated—it has the infinite sequence {1/n}° of disconti-
nuities; a piecewise continuous function can have only finitely many discontinuities
in any bounded interval.

Note that a piecewise continuous function need not be defined at its isolated
points of discontinuity. Alternatively, it can be defined arbitrarily at such points.
For instance, the square wave function f of Fig. 9.2.1 is piecewise continuous no
matter what its values might be at the points ..., -4, =2,0,2,4, 6, ... at which it
is discontinuous. Its derivative ' is also piecewise continuous; f’(r) = O unless!?
is an even integer, in which case (1) is undefined.

The piecewise continuous function £ is said to be piecewise smooth provided
that its derivative f' is piecewise continuous. Theorem 1 (next) tells us that the
Fourier series of a piecewise smooth function converges everywhere. More general
Fourier convergence theorems—with weaker hypotheses on the periodic function
[—are known. But the hypothesis that f is piecewise smooth is easy to check and
is satisfied by most functions encountered in practical applications. A proof of the
following theorern may be found in G. P. Tolstov, Fourier Series (New York: Dover,
1976).

THEOREM 1 Convergence of Fourier Series

Suppose that the periodic function £ is piecewise smooth. Then its Fourier sexies
in (6) converges

(a) tothe value f (1) at each point where f is continuous, and

(b) tothe value %[ f @) + f(t—)] at each point where f is discontinuous.

Note that ]§[f(f+) + f(t—)]is the average of tle right-hand and left-hand
limits of f at the point 1. If f is continuous at ¢, then f(r) = f(t+) = f(1—), 5O

_ ./(r+)+.f(z—). (13
2

> fl)



Example 1

Continued

Solution

(GURE 9.2.3. The period 2
nction of Example 2.

9.2 General Fourier Series and Convergence 593

Hence Theorem 1 could be rephrased as follows: The Fourier series of a piecewise
smooth function f converges for every ! to the average value in (13). For this reason
it is customary to write

a s t !
f(t)=?0 +Z(a,,cos%+b,,sin %) (14)

n=1
with the understanding that the piecewise smooth function f has been redefined (if

necessary) at each of its points of discontinuity in order to satisfy the average value
conditionin (13).

Figure 9.2.1 shows usata glance that if 7 is an even integer, then

]inl Ff)=4+1 and Hm f@)=—I.

=1ty =1,

Hence _
S+ + f(a—)
2

=0.
Note that, in accord with Theorem 1, the Fourier series of f(r) in (11) clearly con-

verges to zero if n is an even integer (because sinnr = 0). |

Let f(1) bea function of period 2 with f(1) =¢*if0 < 1 < 2. We define f(1)
for z aneven integer by the average value conditionin (13); consequently, (1) = 2
if 1 is an even integer. The graph of the function f appearsin Fig. 9.2.3. Find its
Fourier series.

Here L = 1, and it is most convenient to integrate from = 0 to t = 2. Then
I

1/2, [1 ‘] 8
iy = — *dtr=1}-r = —.
[y 30,73

With the aid of the integral formulas in Eqs. (22) through (25) of Section 9.1, we
obtain

o}

- 7
iy =f t-cos nit dt
n

| RIZ% 4
b 14
= 53 u”cosidu (u =n7mt, t = —
nm"n= Jo nr

1 - ) 2nr 4
== q[u' sinu — 2sinn + 2i cos u] =—:
nAme 0 n-a-
2 , 1 2nw
L 2 .
b, =/ r-simamtd = —3—?/ n=sinedu
0 n>ma- Jo
] 4 . 2urc 4
== 3[—u'cosu + 2cosun + 2usin u] =——.
nigs 0 ni
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Hence the Fourier series of f is

4 i cosnat
PEN AT

and Theorem | assures us that this series convergesto f(t) for allt. |

fa) = (15)

(SN N

n=1

We can draw some interesting consequences from the Fourier series in ( 15).
If we substitute 1 = 0 on each side, we find that

F)y=2

le-ll

= 1
=31

n=I

|\:

On solving for the series, we obtain the lovely summaltion

2, 1 ool n3
> —=l4+=+= — 16
; =l ettt = (16)
that was discovered by Euler. If we substitute 1 = 1 inEq. (15), we get
4 4 & (=n"
1 = ] = - _ ,
J(h 3 - a2 'X__: 7L
which yields
S\ (=1 Lo m’
=l-=4+5—-—=+4+--=—. 17
“Z:: n? 2 i 32 4 * 12 7
If we add the series in Egs. (16) and (17) and then divide by 2, the “even” terms
canceland the result is
I oo T’
Z-v=1+—+—,+ o= (18)
1 odd e 5 8

In Problems [ through 14, the values of a periodic function 5. f() =1, 27 <t <27
f () in one _ﬁt'll perio(.I are given; at each (/isc{)mim{i{y l/{e 6. [() =1 O<i <3
value of f(t) is that given by the average value condition in ’
(13). Sketch the graph of f and find iis Fourier series. T f( =1, —l<r<1
) _3<q <o 0, 0<r=<l;
L f()= 3 0<y <3 8 f(N=41. 1 <r<2;
0. 2<r<3
0, -5<r<0;
2. fn=1" ' 9. ju) =+, ~l<t < |
S0 I, O<tr <5 I =
0, =-2<t<
— . 10. 1) = ’
3 [ = 2, 27 <i1<O F=12 (<, <1
’ —1. O0<it <27
Tt
4. f(f):f D <t <2 11. f(f):COS—)—'. —-l<r <l




[y =sinmr, 0 <1 <1
. 0. —l <t <0
fin=1" =
sinmt. 0<1<1
=253 t .
[ = Tet=<0

sint. O<t < 2r

(a) Suppose that [ isa functionof period 2 with f (1) =
12 for0 < 1 < 2. Show that

i sinnt
n

n=l1

(OSHI

S =

n=l

and sketchthe graphof f.indicating the value an each dis-
continuity. (b) Deduce the series summationsin Eqgs. (16)
and (17) from the Fourier series in part (a).

(a) Suppose that f is a function of period 2 such that
fy=0if=1 <t < O0and f(t)y=1if0 <1 < I
Show that

CoS NIt I & (1) sinnmTe
fin=do 2y L s
I e i

nodd n=1

and sketchthe graphof f.indicating the value ateach dis-
continuity. (b) Deduce the series summattion in Eq. (18)
from the Fourier series in part (a).

(a) Suppose that f isa functionof period 2 with f(r) =1
forO <t < 2. Show that

2 Ssinnme
W=1- - e —
[ E =

7 n=1

and sketch the graph of [, indicating the value at each
discontinuity. (b) Substitute an appropriate value of 1 (o
deduce Leibniz's series

1 1 | T

l— oo — o=
375777 a

ve the Fourier series lisiedin Problems 18 throvgh 21, and
T the period 27 function 1o which ecach series converges.

oo .
sinnty T —
Z =— (D<1<27T)
n=i n -
S (=D sinnr
Z——-_—— (- <t <)
n=| n 2
o0 k] ]
cos it 3= — 6t 4+ 21"
Z = (0<t < 2m)
= 12
& (—="reosi m? =38 .
Z e = 5 (-7 <r<m)
n=l|

Suppose that p(r) is a polynomial of degrce 2. Show by
repeated integration by parts that

/[}(I)g(l) dt = p)G(t) — p"(DGalt)

+ PG ) = - (=1) PG (1)

9.2 General Fourier Series and Convergence

~
w

(L)
Eol

25.
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where G;(1) denoles the kth iterated antiderivative
Gi(1) = (D™ g(r). This formula is useful in comput-
ing Fourier coefficients of polynomials.
Apply the integral formula of Problem 22 1o show that
/ rfcostdt =1t'sint +dtcost
— 12¢%sint — 24icos 1 +24sint + C

and that

f rsinrdt = —1* cost + 47 sing

+ 1217 cost — 24rsint — 24 cost + C.
(a) Showthat for) <1 <2,

1677 ~ 7t 3

i :

= — — — |cosnt
5 Z( 2 “4)

2
Ty .
— — — | smm
n

and sketch the graphof f.indicating 1he value at each dis-
continuity. (b) Fromthe Fourier series in part (a), deduce
the summations

I(mz

n=

w4 7m4

0

and
1 b

%.

>

_4 e
uwd”

(a) Find the Fourier series of the period 271 function f

with f(1)==13if =7 <t < . (b) Use the serics of part

(a) to derive the summation

Ii

—t 3

~

and sketch the graph of [, indicating the value at each
discontinuity. (¢) Arternpt to evaluate the serics

il_l l+|+l
nd 43

n=1

+

by substituting an appropriate value of  in the Fourier
series of part (a). Is your attempl successful? Explain.
Remark: 1f you succeed in expressing the sum of this
inverse-cube series in terms of lamiliar numbers—for in-
stance, as a rational multiple of m¥ similar to Euler’s sum
in part (a)—you will win great fame for yourself, for many
have tried without success over the last twocenturies since
Euler. Indeed, it was not until 1979 that the sum of the
inverse-cube series was proved 1o be an irrational sumber
(as long suspecied).
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(& ZNelelllele]iles]i} Computer Algebra Calculation of Fourier Coefficients

A computer algebra system can greatly ease the burden of calculation of the Fourier
coefficients of a given function f (r). Inthe case of a function that is defined “piece-
wise,” we must take care 1o “split” the integral according to the different intervals
of definition of the function. We illustrate the method by deriving the Fourier series
of the period 277 square-wave function defined on (—7, 7) by

+1 if 0 <1 =<m. (1)

—1 if -7 <1t <0,
f() = l
In this case the function is defined by different formulas on two different i ntervats,
so each Fourier coefficient integral from —r to or must be calculated as the sum of
two integrals:

0 T

— (—1) cosntdt + — (+D)cosnzdt,
T

- T Jy

=
1

0 1 7T
— (=D sinntdt—f———/ (+D)sinnr dr.
T T Jo

-

b,

We can define the coefficients in (2) as functions of n by the Mapile commands

a :=n —> (1/Pi)x(int (~cos(nkt), t=-Pi..0) +
int(+cos (n+t), t=0..Pi)):
b :=n —> (1/Pi)*(int (~-sin(n*t), t=-Pi..0) +
int(+sin(nit), t=0..Pi)):

or by the Mathematica commands

a[n_] := (1/Pi)*(Integrate[—-Cos[nx*t], {t, -Pi, O0}] +
Integrate[+Cos[nxt], {t, O, Pi}])
b[n_}] := (1/Pi)*(Integrate[-Sin[nxt], {t, -Pi, 0}] +

Integrate[+Sin[nxt], {t, 0, Pi}})

Because the function f£(t) in Eq. (1)is odd, we naturally find that ¢, = 0. Hence
the Maple commands

fourierSum := sum(b(n)*sin(nst), n=1..9);
plot(fourierSum, t=-2%Pi..4%Pi);

or the Mathematica commands

fourierSum = Sum{b[n]*Sin[nxt], {n,1,9}]
Plot{fourierSum, {t, -2%Pi, 4xPi}];

yield the partial sum

29:1) sinrl 4 sint 4+ sin 3t - sin St N sin7t 4 sin 9¢
n S1 = =
— T 3 5 7 9

and generate a graph like one of those in Fig. 9.1.3. The corresponding MATLAB
commands are entirely analogous and can be found in the applications manual that
accompanies this text.
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To practice the symbolic derivation of Fourier series in this manner, you can
begin by verifying the Fourier series calculated manually in Examples 1 and 2 of
this section. Then Problems 1 through 21 are fair game. Finally, the period 2w
triangular wave and trapezoidal wave functions illustrated in Figs. 9.2.4 and 9.2.5
have especially interesting Fourier series that we invite you to discover for yourself.

ol
1

win

y=——1

!
wil=A
T

|
1ot
T

FIGURE 9.24. The triangular wave. FIGURE 9.2.5. The trapezoidal wave.

Fourier Sine and Cosine Series

Certain properties of functions are reflected prominently in their Fourier series. The
function f defined forall 7 is said tobe even if

> f=n=f® (D

for all 1; f is odd if

» f(=0)=-f() )

for all 1. The first condition implies that the graph of y = f(r) is symmetric with
respect to the y-axis, whereas the condition in (2) implies that the graph of an odd
function is symmetric with respect to the origin (see Fig. 9.3.1). The functions
£t) = 17 (with n an integer) and g (1) = cost are even functions, whereas the
functions £(z) = ¢**' and g(z) = sin are odd. We will see that the Fourier series
of an even periodic function has only cosine terms and that the Fourier series of an
odd periodic function has only sine terms.

(=t.fuD

(N A)]

Even 0dd
(=1.=f(r)

(a) (b)
FIGURE 9.3.1. (a) Aneven function; (b) anodd function.
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1
|
7 Even \/ £0dd

(@) (b)
FIGURE 9.3.2. Areaunder the graph of (a) an even functionand (b) an odd.

—d

Addition and cancellation of areas as indicated in Fig. 9.3.2 reminds us of
the following basic facts about integrals of cvennand odd functions over an interval
[—a, a]that is symimetric around the origin.

If fiseven: ft)di=2 / fwdr. 3)
0

—da

If fis odd: j Sydr=0. “

These facts are easy to verify analytically (Problem 17). i
It follows immediately from Eqgs. (1) and (2) that the product of two even func-

tions is even, as is the product of two odd functions; the product of an even function

and an odd function is odd. In particular, if f(1) is an even periodic function of pe-

riod 2L, then f(t)cos(nr1/L) is even, whereas [ (1) sin(awt/L) is odd, because the

cosine function is even and the sine function is odd. When we compute the Fourier

coefficients of f, we therefore get

1k ! 2 [k t
a, = 0 _L.f(z)cos —”Z dt = 3 ; f () cos —”Z dt (5a)
and
1 L .ot n
by = — f()sin——dt=0 (5b)
LJ_, L

because of (3) and (4). Hence the Fourier series of the even function f of period 2L
has only cosine terms:

44

_ o, § nri , 6)
f = 5 +;;a,, cos — (f even) (

with the values of a,, given by Eq.(5a). If £(¢)isodd,then f(z)cos(nmt/L) 1 odd,
whereas f(t)sin(nmt/L) is even, so

bt Tt
ay = Z[‘I f(I)COSI‘,Z—(IIZO (73)
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and
L

[ 1 2 1
b= 1 f_L _f(r)sin%—dz =7 f(:)sini'—Z—dz. (7b)

Hence the Fourier series of the odd function f of period 2L has only sine terms:
2 nit
f(t) = b, sin — odd 8
S ”Z; busin — (f odd) (8)

with the coefficients b, given in Eq. (7b).

Even and Odd Extensions

In all our earlier discussion and examples, we began with a periodic tunction de-
fined for all 1, the Fourier series of such a function is uniquely determined by the
Fourier coefficient formulas. In many practical situations, however, we begin with
a function f defined only on an interval of the form 0 < t < L, and we want 1o
represent its values on this interval by a Fourier series of period 2L. The first step
is the necessary extension of f to the interval —L < ¢ < 0. Granted this, we may
extend f to theentire real line by the periodicity condition f(t +2L) = f(¢) (and
use the average value property should any discontinuities arise). But Ziow we define
f for—L < t < 0is our choice, and the Fourier series representation for f(r)
on (0, L) that we obtain will depend on that choice. Specifically, different choices
of the extension of [ to theinterval (—L, 0) will yield different Fourier series that
converge to the same function f (1) inthe original interval O <t < L, but converge
to the different extensions of f on theinterval —L < < 0.

In practice, given f(z) defined for0 <1 < L, we generally make one of two
natural choices—weextend f insucha way as to obtain either an even function or
an odd finction on the whole real line. The even period 2L extension of f isthe
function ft defined as

f if 0<t<lL,

f(=t) if—=L <t <0 ©

Je(@) = l

and by fe(r +2L) = fe(1) forall r. The odd period 2L extension of f isthe
function fy defined as

fote) ‘_/‘(r) if O<f<lL.

—f(—=n if—-L<t<0 19
and by folr +2L) = fo(t) for all . The values of fg or fo fort an integral
multiple of L can be defined in any convenient way we wish, because these isolated
values cannot affect the Fourier series of the extensions we get. As suggesied by
Fig. 9.3.1,it frequently suffices simply to visualize the graph of fg on (—L.0) as
thereflection in the vertical axis of the original graph of f on (0, L), and the graph
of foon (—L, 0) asthe reflection in the origin of the original graph.

For instance, if f(z) = 2t — * onthe interval 0 < 1 < 2(so L = 2).then(9)
and (10) yield

) =2(=D — (=) = =21 = 1*
and

folty=—[2(=1) = (=2)*] =21 4 1*
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VaYAYAYA /AYaVAYAY.

—8—6—4—2L2468'
-1

(@)

AN A YA,
/8-4—x4vv

(b)

FIGURE 9.3.3. (a) The period 4
even extension of f(1) = 2t —1*
forO <t < 2. (b) Graph of the
period 4 odd extension of
fu)y=2—1*for0 <t <2.

Solution

for the values of these two extensions on the interval —2 < t < 0. The graphs of
the corresponding two periodic extensions of f are shown in Fig. 9.3.3.

The Fourier series of the even extension fg of the function f, given by Eqs. (5)
and (6), will contain only cosine terms and is called the Fourier cosine series of the
original function f. The Fourier series of the odd extension fo, given by Egs. (7)
and (8), will contain only sine terms and is called the Fourier sine series of f.

DEFINITION Fourier Cosine and Sine Series

Suppose that the function f (1) is piecewise continuous on the interval [0, L].
Then the Fourier cosine series of f is the series

oo
t
> o=+ ;a cos = (i
with
2 [+ nrrt
> y = — t — dt. 12
=7 _/0 fr)cos T 12)
The Fourier sine series of f is the series
t
> i) = Zb,, sin E (13)
n=1
with
2% [ t
> b, = Zfo £(t)sin %d;. (14)

A%umino that f is piecewise smooth and satisfies the average value condition
f@)y = [f (t+) + f(t—)] ateach of its isolated discontinuities, Theorem 1 of
Section 9 2 implies that each of the two series in (11) and (13) converges to f(f)
for all ¢ in the interval 0 < ¢ < L. Outside this interval, the cosine series in (11)
converges to the even period 2L extension of f, whereas the sine series in (13)
converges to the odd period 2L extension of f. In many cases of interest we have
no concern with the values of f outside the original interval (0, L), and therefore
the choice between (11) and (12) or (13) and (14) is determined by whether we
prefer to represent f (1) in the interval (0, L) by acosine series or a sine series. (See
Example 2 for a situation that dictates our choice between a Fourier cosine series
and a Fourier sine series to representa given function.)

Suppose that f(1) =1t forO <t < L. Find both the Fourier cosine series and the
Fourier sine series for f.

Equation (12) gives

]t
[ |
| —
~
&
| S
o ~
l
o~

2 L
ao:Z/O tedl =



1 1 1

oL L | L 2L i AL

GURE 9.3.4. The even period
. extensionjof f.

GURE 9.3.5.
. extension of f.

The odd period
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and

2 [k nwt 2L (7
ap = — t cos dt = ——5 ucosudu
L 0 L n=-a-= Jg

4L
nia?
0 formeven.

2L

nir —

= 5 [u sinu 4 cos u] =
nim: 0

fors odd;

Thus the Fourier cosine series of f is

1=—1:—4—L( sm+l—cos3—n—r+]—cs£+ ) (13
2 x? L 32 L 52 L
forO <t < L.Next, Eq.(14)gives
b, =~ ’ t sin ot dr = i f”n nsinu die
0 L == Jy
= 2,—L [—u cosut + mw]‘m = Q—L(—l)”'H.
n-JT- 0 nT
Thus the Fouricr sine series of f is
I=2—L(sinﬂ—lsi112—n—£+lsiniﬂ—r—---) (16)
b4 L 2 L 3 L

forQ < t < L. The series in Eq. (15) converges to the even period 2L exiension
of f shown in Fig. 9.3.4; the series in Eq. (16) converges to the odd period 2L
extension shown in Fig. 9.3.5. |

Termwise Differentiation of Fourier Series

In this and in subsequent sections, we want to consider Fourier series as possible
solutions of differential equations. In order to substitute a Fourier series for the
unknown dependent variable in a differential equation to check whether it is a so-
hution, we first need to differentiate the series in order to compute the derivatives
that appear in the equation. Care is required here; term-by-term differentiation of
an infinite series of variable terms is not always valid. Theorem | gives sufficient
conditions for the validity of termwise differentiation of a Fourier series.

THEOREM 1 Termwise Differentiation of Fourier Series

Suppose that the function f is continuous for all 7, periodic with period 2L, and
that its derivative f’ is piecewise smooth for all z. Then the Fourier series of f’
is the series

nmw .onmt  nw nrrt
ffi) = Z(w——a,,sm T —|——L—b,,cos T) a7

obtained by termwise differentiation of the Fourier series

ao . onrt
f() = 7 + Z (a,, cos — -I—b,,sm 7 ) (18)

n=I
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Proof: The point of the theorem is that the differentiated series in Eq. (17)
actually converges to f'(r) (with the usual proviso about average values). But be-
cause f”isperiodic and piecewise smooth, we know from Theorem 1 of Section 9.2
that the Fourier series of f’ convergesto f'(z):

f(t)_ao Z(a,,cos’L +,B,,sin%) (19

n=1

In order to prove Theorem 1, it therefore suffices to show that the series in Egs. (17)
and (19) are identical. We will do so under the additional hypothesis that f' is
continuous everywhere. Then

bt i L
o= | @0 =[ro], =0
because f(L) = f(—L) by periodicity, and

| L nict
y == (1) cos —dit
o Lf_I,f()COS LC

I nme - n
T [.f(f) cos T]—L f f) sm— dt

—integration by parts. It follows that

nm
n = —‘bn-
)
Similarly, we find that
nrw
= — 0y,
L
and therefore the seriesin Eqs. (17) and (19) are, indeed, identical. A

Whereas the assumption that the derivative f' is continuous is merely a con-
venience—the proof of Theorem 1 can bestrengthened to atllow isolated discontinu-
ities in f'—itisimportant to note that the conclusion of Theorem 1 generally fails
when f itself is discontinuous. For example, consider the Fourier series

, 2L (. mt 1 . 2t +l 37t 316)
=-—|sin— — =sin — + -sin— —--- |},
2 N TS T TSy

—L <1 < L, of the discontinuous sawtooth function having the graph shown in

Fig. 9.3.5. All the hypotheses of Theorem | are satisfied apart from the continuity
of f, and f has only isolated jump discontinuities. But the series

? 27t 3nt
2<cos%—cosi+cos T —) (20)

L L

obtained by differentiating the seriesin Eq. (1 6) term by term diverges (for instance,
when t = 0 and when ¢ = L), and therefore termwise differentiation of the series
in Eq. (16) is not valid.
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By contrast, consider the (continuous) triangular wave function f(r) having
the graph shown in Fig. 9.34, with f(1) = |¢|for =L <t < L. This function
satisfies all the hypotheses of Theorem 1, so its Fourier series

f(t)—L 4L cos th+l s3ﬂ+1cssm+ (15)
JW=5"1 L T T

can be differentiated termwise. The result is

4 at 1 3mr 1 Syt
"t)= — [sin —+ =sin — 4+ =sin — + -+ 21
i) ﬂ(smL+391n T +551nL + ), 20

which is the Fourier series of the period 2L square wave function that takes the
value —1 for —L <t <Qand +1for0 < ¢ < L.

Fourier Series Solutions of Differential Equations

In the remainder of this chapter and in Chapter 10, we will frequently need to solve
endpoint value problems of the general form

ax’+bx +cex=f@) O<t <L) 22)
x(0)=x(L) =0, 23)

where the function f(r) is given. Of course, we might consider applying the tech-
niques of Chapter 3, solving the problem by

1. Firstfinding the general solution x. = ¢;x; + ¢2x2 of the associated homoge-
neous differential equation;

2. Then finding a single particular solution x, of the nonhomogeneous equation
in (22);and

3. Finally, determining the constants ¢; and ¢z sothatx = x. +x, satisfies the
endpoint conditionsin (23).

In many problems, however, the following Fourier series method is more con-
venient and more useful. We first extend the definition of the function f (1) to the
interval —L < < 0 in an appropriate way, and then to the entire real line by the
periodicity conditions f (t+2L) = f(r). Then the function f, if piecewise smooth,
has a Fourier series

© nrt
Q) = Ao, (A,,cos +B,,§m—> (24)
SR L .

which has coefficients {4, } and {B,} that we can and do compute. We then assume
that the differential equation in (22) has a solution x(r) with a Fourier series

nmwt
n + bn 25
+ Z(a cos sin I ) (25)

n=1

that may validly be differentiated twice termwise. We attempt to determine the
coefficients in Eq. (25) by first substituting the series in Eqs. (24) and (25) into the
differential equation in (22) and then equating coefficients of like terms—much as
in the ordinary method of undetermined coefficients (Section 3.5), except that now
we have infinitely many coefficients to determine. If this procedure is carried out in
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Solution
T T T T
0 4 b /, \\ ,/ \\ -
. \ 1 A
) \ ! A
0.2 1 \ I -
1 \ 1 \
! 1 g
= 0.0 4
02 F .
B v 02T
-0.4 |- . sin2
1 1 1 1
-1.0 0.0 1.0 20

FIGURE 9.3.6. Graph of the
solution in Example 2.

such a way that the resulting series in Eq. (25) also satisfies the endpoint conditiong
in (23), then we have a “formal Fourier series solution™ of the original endpoin
value problem; that is, a solution subject to verification of the assumed termwise
differentiability. Example 2 illustrates this process.

Find a formal Fourier series solution of the endpoint value problem

4 =4, (26)
Y@ =x{1)=0. 270

Here f(t) =4t for 0 <t < 1. Acrucial first step—which we did not make explicit
in the preceding outline—is to choose a periodic extension f(t) so that each term
in its Fourier series satisfies the endpoint conditions in (27). For this purpose we
choose the odd period 2 extension, because each term of the form sinsna ¢ satisfies
(27). Then from the series in Eq. (16) with L = 1, we get the Fourier series

8 O (_l)n+l

4t = - ; —n——sin nwt (28)

for0 <t < 1. We therefore anticipate a sine series solution

o0
(1) = Z b, sinnmt, 29)

n=1

noting that any such series will satisfy the endpoint conditions in (27). When we
substitute the series in (28) and (29) in Eq. (26), the resultis

"o 8 he) (_])u-H
Z(—Ilzitz+4)b,, sin nrtt = — Z——————~sinmrt. (30)

n=1 T n=1 n

We next equate coefficients ot like termsin Eq. (30). This yields

g . (_l)n—H

l) = —-——
" - n2a2y

so our formal Fourier series solution is

[

1yl |
t([):ﬁz( l) S]nlln’[' (3])

T nd— n3r?)

In Problem 16 we ask you to derive the exact solution

in2
xX()=t— Sl_]]~t (02 <), (32)
sin2

and to verify that (31) is the Fourier series of the odd period 2 extension of this
solution. i

The dashed curvein Fig. 9.3.6 wus plotted by summing 10terms of the Founef
series in (31). The solid curve for 0 £ 1 < 2 is the graph of the exact solution If
(32).
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Termwise Integration of Fourier Series

Theorem 2 guarantees that the Fourier series of a piecewise continuous periodic
function can always be integrated term by term, whether or not it converges! A
proof is outlined in Problem 235.

THEOREM 2 Termwise Integration of Fourier Series

Suppose that f is a piecewise continuous periodic function with period 2L and
Fourier series

t
f(f N~ + Z (an cos T + bn sin %) ’ (33)
n=1

which may not converge. Then

! o0
apt L . onott nmt
ds = — — | ay, —b, — =1}, 34
fof(s) y +anr [a sin — ,(cos 3 )} (34)

n=1

with the series on the right-hand side convergent for all r. Note that the series
in Eq. (34) is the result of term-by-term integration of the serles in (33), but if
ag # 0t is nota Fourier series because of its linear initial term aot

m Let us attempt to verify the conclusion of Theorem 2 in the case that f(1) is the
period 27 function such that

-1, -7 <t<0
= ’ ' 35
ro {+1, O<rt <. (3)

By Example 1 of Section 9.1, the Fourier series of f is
4 I 1.
f() = —(sint + -sin3r 4+ —siuSt+--- |. 36)
T 3 5
Theorem 2 then implies that

F(1) =[ f(s)ds
0

14 1 I
f—<sins+—si113s+—sin5..s‘-|—~~ ds
o 7T 3 5

4 1 I
— [(] - cost)+— (1 —cos3t)+ = (I —cos51) + - ] .
T 3- 5

Thus

4 1 I
F(1)=—(l+ ,+—+---)
T 32

4 I 1
(cost + Tco% 3t + 5 COs 5t + - ) 37
T
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On the other hand, direct integration of (35) yields

F(f)=f f(s)ds=|t|.—_l
0

—t, -1 <t<Q.

{, O<t<m.

We know from Example | in this section (with L = 7r) that

=" =2 (cost + = cos3r + = cos 5t + (38
= — — —|{ cos — COs - — CO$ ) :
2 7 32 52 )
We also know from Eq. (18) of Section 9.2 that
43 : S+ L obop = i
7’ -8’

so it follows that the two series in Eqs. (37) and (38) are indeed identical. |
m Problems
In Probjems I through 10, a function f(t) defined onanimer- 16. (a) Derivethe solution x(7) = 1 — (sin27)/(sin2) of the

val 0 < t < L is given. Find the Fourier cosine and sine series
of f and skeich the graphs of the mwo extensions of f 1o which
these rwo series converge.

. fn=1L0<t<m
2. fy=1-1r.0<t <1
3 f)=1—-1t,0<1 <2
0<t <1,
4. 1 = -
A 2—t1, 1St <2
0, O0<t<;
5. fin=31, Il<t<2;
0, 2<i1<3
6. fn=r0<t<m
7. f=tmn—1).0<t <nm
8 f(N=1—120<1 <1
9. f(n=sin1,0<r <m
sint. O<t&m
10. = =
) { <1 <2

Find formal Fourier series solutions of the encpoint value
problems in Problems 11 through 14.

11. \"+7\ =1,x(0)=x()=0

12, 7' —dx=1,x(0) =x@(r) =0

13. " +x=r.x(0)=x(1)=0

14, " +2xr=1,x0)=x(2)=0

15. Find a formal Fourier series solution of the endpoint value
problem

Y 2v=t, YO =x"(m)=0.

(Suggestion: Use a Fourier cosine series in which each
term satisfies the endpoint conditions.)

17.

18.

19.

endpoint value problem

ydv=4, xO)=x(1)=0.

(b) Show that the series in Eq. (31) is the Fourier sine
series of the solution in part ().
(@) Suppose thal f isaneven function. Show that

[¢]

Fwyde =f fydr.
(4]

(b) Suppose tha( fisanodd function. Show that
{ a
fydt = —/ fyde.
- 0

By Example 2 of Section 9.2, the Fourier serics ol the pe-
riod 2 function f with f(t) =17 forO <1 < 2 is

i cos nrtt Z sin nt
n? n

=1 n=1

f =

(YRS
-'=l|4=‘

Show that the termwise derivative of 1his series does not
converge to f'(¢#).
Begin with the Fourier series

x< (___ l)n+l
=2)_

n=I

sinnr,

—T <t <,

and integrate termwisc three times in succession to obtai?
the series

-
(8]

__l n ])”
1 ___,_.

1w _,i( )
24 T 12 -”=] n? n?

cosnt—+2
n=1




ubstitute + = 7/2 and 1 = 7 in the series of Problem 19
) obtain the summations

i 1 _7!4 i (—l)"“ _77{4
< T w7207

"= =l

nd

| | 1 7t

I+ + =+ 4+ =—.
- 3 - 5t " 74 * 96
Odd half-multiple sine series) Let f(f) be given for
<t < L.anddeline F(t) for0 < r < 2L as follows:

Ja. 0<t<LlL:

Fu)y =
JQRL-1n. L <t<2L.

“hus the graph of F (1) is symmetric around the lines = L
Fig. 9.3.7). Then the period 4L Fourier sine series of F

Z by, si

n=1

vhere

; 1 /" £ si nt it
hy = — Sin —— ¢
L/, Y

. ljzl. f(’)L si nrt I
— 2L — t)sm — di.
. LJ 2L

. ' .‘1" . .
jubstitute s = 2L — ¢ in"the second integral 1o derive the
erics (for0 <t < L)

f( = ZI),,SI]] il

rodd

vhere

b, =

L
Tt
f./(l)sin%—dl (r1odd).

0

al S

FIGURE 9.3.7. Consiruction of I from f in
Problem 21.

Odd half-nliiple cosine series) Let f(1) be given for
) <t < L, anddefine G(1) for0 < 1 < 2L as follows:

S(). O<t < L:

GO =0 roL-n L<i<iL

Jse the period 4L Fourier cosine series of G(r) to derive
he series (for 0 <¢ < L)
1Tt
f(n) = Z(l,,COS l——

5
nodd 2L

ro
W

(3]
n
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where

2 (* t
a, = ZA f{1) cos ,;_iL dt (n odd).

. Given: f(t) =1,0 <t < 7. Derive the odd half-muliiple

sine series (Problem 21)

8 (_])(u 1h/2 ; nt
f() = - Z——,—-sm >

nodd e

. Given the endpoint value problem

M—x=1 x(0)=0. ¥(@)=0

note that any constant multiple of sin(nt /2) with 12 odd
satisfies the endpoint conditions. Hence use the odd half-
muliiple sine series of Problem 23 to derive the formal
Fourier series solution

32 (=DweH2 oy
X)) = — —_ S —.
W) 7T Z it 4+ 4) o 2

sodd

. In this problem we outline the proof of Theorem 2. Sup-

pose that f () is a piecewise continuous period 2L func-
tion. Define

t
F(n) = f [f(s) — lza()] ds,
0

where {a,} and {h,} denote the Fourier coefficients of
J(2). (a) Show directly that F(r +2L) = F(1),sothat
F is a continuous period 2L function and therefore has a
convergent Fourier series

Tr
F) = ———1-2(/\,, cos—— + B,,mn’—]—%—) .
n=l

(b) Suppose thatn 2 1. Show by direct compulation that

L
A, = ——Db, and B,=—a,.
nw ni

(¢) Thus

o t 1
/[; f(‘) l/S = Ell() + EA(]

o
L NIt nmt
+ — {a,sin — — b, cos — | .
; nw ( ! L ! L
Finally, substitute t = 0 to see that

1 > L
EA” = ZHI)H-

n=i
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YA W.NeJolllefoli[es] Fourier Series of Piecewise Smooth Functions

Most computer algebrasystems permit the use of unit step functions for the efficient
derivation of Fourier series of “piecewise-defined’” functions. Here we illustrate the
use of Maple for this purpose. Mathematica and MATLAB versions can be found ip
the applications manual that accompanies this text.

Let the “unit function” unit(f, «, b) havethe value I onthe intervala St < b
and the value O otherwise. Then we can define a given piecewise smooth function
f(#) as a*linear combination” of different unit functions corresponding to the sepa-
rate intervals on which the function is smooth, with the unit function for each inter-
val multiplied by the formula defining f'(z) on that interval. For example, consider
the even period 27 function whose graph is shown in Fig. 9.3.8. This “‘trapezoidal
wave function’ is defined for 0 <r < & by

f@) = %unit(t, 0, %)

+ (%—r)unit(r,%,%T)-l—(—%)unit(t, %,n). )

—_—
N

P
~

3 1
&5 &)

FIGUFE 9.3.8. Even period 27 trapezoidal-wave function.

The unit step funciion (with values 0 for t < QOand 1 for¢ > 0) is available in Maple
as the “Heaviside function.” For instance, Heaviside(—2) = 0 and Heaviside(3) =
I. The unit function on the interval [¢, b] can be defined by

unit := (t;a,b) -> Heaviside (t-a) - Heaviside(t-b):
Then the trapezoidal-wave function in Eq. (1) is defined for 0 £ + < 7 by

f :=t —> (Pi/3)*unit(t, 0, Pi/6) +
(Pi/2 - t)*unit(t, Pi/6, 5xPi/6) +
(-Pi/3)xunit(t, 5%Pi/6, Pi):

. . . . . 1
We can now calculate the Fourier coefficients in the cosine series f(r) = 300 +
> ay, cosnt.

a :=n —> (2/Pi)xint(f(t)*cos(nxt), t=0..Pi);
We then find that a typical partial sum of the seriesis given by

fouriersum := a(0)/2 + sum(a(n)x*cos(nkxt), n=1..25);

e
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V3 cos(?) 2 N3 cos(5t) B _2_ V3 cos(71)

fourierSum : =2

T T 25 T 49 7
2 JBeos(ll) 2 V3cos(13t) 2 /3 cos(171)
121 b 169 T 289 7
i /3 cos(191) - 2 V3 cos(23t) 4 2 3 cos(251)
361 b 529 T 625 7

Thus we discover the lovely Fourier series

f@ =

243 () cosnt
—2

n?

(2

with a +——++~-—-++ pattern of signs, and where the summation is taken over
all odd positive integers 7 that are o7 multiples of 3. You can enter the command

plot( fourierSum, t=-2%Pi..3#Pi);

to verify that this Fourier series is consistent with Fig. 9.3.8.
You can then apply this method to find the Fourier series of the following
period 2 functions.

1. The even square-wave function whose graph is shown in Fig. 9.3.9.

2. The even and oad friangular-wave functions whose graphs are shown in
Figs.9.2.4 and9.3.10.

3. The odd trapezoidal-wave function whose graph is shown in Fig. 9.2.5.

Then find similarly the Fourier series of some piecewise smooth functions of your
own choice, perhaps ones that have periods other than 271 and are neither even nor

odd.
(30 x
Ot o ¥
| ! I
] ] i
] 1 1
] I ]
1 I 1
L L L 1 L ! ' . ! L '
-1 v 1 T M 2n -1 T
| : i
[} I ]
] ] 1
] ] 1
1 1l 1 ]
G- EFE- 30 (m.~9)

TGURE 9.39. Even period 2r square-wave function. ~ FIGURE 9.3.10. Even period 27 triangular-wave functien.

P] Applications of Fourier Series

We consider first the undamped motion of a mass /n on a spring with Hooke’s
constant 4 under the influence of a periodic external force F(t), as indicated in
Fig. 9.4.1. Its displacement x (1) from equilibrium satisfies the familiar equation

mx" 4+ kx = F(r). H
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Example 2

Solution

Example 3

Solution

Suppose thatm = 2kg and & = 32 N/m as in Example 1. Determine whether pure
resonance will occurif F(z) is the odd periodic function defined in one period to be

+10, O0<1 <m;
—10, 7w <1t <2m.

(b) F(r) =101, —m <t < 7.

(@) F(r) =

(a) The natural frequency is wy = 4, and the Fourier series of’ F(1) is
40 ( . I 1.
F)=— (|sint+=sin3r+—=sin5 + - - }.
7T 3 5

Because this series contains no sin 47 (ern, no resonance occurs.
(b) In this case the Fourier series is

F(n) = 702 sinsit.

n=I

Pure resonance occurs because of the presence of the term containing the factor
sin4t. [ |

Example 3 illustrates the rzecir resonance that can occur whena single term in
the solution is magnified because its frequency is close to the natural frequency wy.

Find a steady periodic sohition of
X+ 10x = F (1), (10

where F (1) is the period 4 function with F(1) = 5t for =2 < t < 2 and Fourier
series

n—+1
F) —~Oz( b sing. (L)
el 1 Z

When we substitute Eq. (1 1) and

Xp t)_Zb,, sln—-

in (10), we obtain

n+]

(o] 2_2 0

nme nnt 20 nret
E b,| ———— +10 9in—-=- } —sin —.
o " ( 4 ) s 2

n=1I

We equate coefficients of like terms and then solve for b, to get the steady periodic
solution

s

80 — )+l t
Xp(t) = — Z*—(( ) sin e

7 A= n@0 — nn?) 2

. t .25 . 3wt
~ (0845D) sin - ~ (24.4111)sin %’ — (0.1738) sin - + -+
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Exqmple 4

Solution
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The very large magnitude of the second term results from the fact that wg = V10 &
71 = 2rr/2. Thus the dominant motion of a spring with the differential equation in
(10) would be an oscillation with frequency 7 radians per second, period 2 s, and
amplitude about 24, consistent with the graph of xg (t) shown in Fig. 9.4.5. |

Damped Forced Oscillations

Now we consider the motion of a mass m attached both to a spring with Hooke’s
constant k and to a dashpot with damping constant ¢, under the influence of a pe-
riodic external force F(r) (Fig. 9.4.6). The displacement x (1) of the mass from
equilibrium satisfies the equation

mx" +ox’ +kx= F(@). (12)

We recall from Problem 25 of Section 3.6 that the steady periodic solution of
Eq. (12) with F(r) = Fysinwt! 1s

Fy

x(n) = sin(wt — o), (13)
J k= ma?)? + (cw)?
where
a:tan"—iw—,, 0La . (14)
k — mew?

If F(1) isanodd period 2L function with Fourier series

ad nmwt
F@) = B, sin , 15
) Z_j in— (15)
then the preceding formulas yield, by superposition, the steady periodic solution

Bn sin{co,t — o))
Xeplt Z . (16)

—mw2)? + (cw,)*

nl

where w, = umr/L and q, is the angle determined by Eq. (14) with this value of .
Example 4 illustrates the interesting fact that the dominant frequency of the steady
periodic solution can be an integral nultiple of the frequency of the force F (1).

Suppose that m1 = 3kg, ¢ = 0.02 N/m/s, k = 27N/m, and F(1) is the odd period
2 function with F(t) = 7t —12if 0 < 1 < 7. Find the steady periodic motion
plf).

We find that the Fourier series of F(z) is

8 1 !
F(@) = - (smt + 3—35m3t+3— sinSt +- ) (1"

Thus B, = Ofor n even, B, = 8/(xn*) for n odd, and w, = n. Equation (16) gives

e l1) = 8 sin(nz — ce,)
T R 2 2T - 3ud)2 + (00m)

(18)
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=2+ 10F (1)
k

FIGURE 94.7. The imposed
force and the resulting steady
periodic motion in Example 4.

Continved

FIGURE 9.4.8. The steady
periodic solution x;(7) and the
damped solution x(1).

with

_1 0.02)n

o, = tan .
! 27— 3p2’

OSow, S (19)

With the aid of a programmable calculator, we find that

Tep() 2 (0.1061) sin(r — 0.0008) + (1.5719) sin (31 — 1)
+ (0.0004) sin (57 — 3.1437) + (0.0001 ) sin(7r — 3.1428) +--- . (20)

Because the coefficient corresponding to » = 3 is much larger than the others, the
response of this system is approximately a sinusoidal motion with frequency rlzree
times thatof the input force. Figure 94.7 shows x(¢) in comparison with the scaled
force 10 F(r)/k that has the appropriate dimension of distance.

What is happening here is this: The mass/n = 3 on aspring with k = 27 has
(if we ignore the small effect of the dashpot) a natural frequency wy = Vk/im =3
rad/s. The imposed external force F(r) has a (smallest) period of 27 s and hence a
fundamental frequency of | rad/s. Consequently, the term corresponding to s = 3
in the Fourier series of F'(r) (in Eq. (17)) has the same frequency as the natural
frequency of the system. Thus near resonance vibrations occur, with the mass com-
pleting essentially three oscillations for every single oscillation of the external force.
This is the physical effect of the dominant 1 = 3 term on the right-hand side in
Eq. (20). For instance, you can push a friend in a swing quite high even if you
push the swing only every ihird time it returns to you. This also explains why some
transformers “hum” at a frequency much higher than 60 Hz.

This is a general phenomenon that must be taken into account in the design of
mechanical systems. To avoid the occurrence of abnormally large and potentially
destructive near resonance vibrations, the system must be so designed that it is not
subject to any external periodic force, some inzegral multiple of whose fundamental
frequency is close to a natural frequency of vibration. |

Finally, let us add to the mass-spring system of Example 1 a dashpot with damping
constant ¢ = 3 N/m/s. Then, since m = 2 and k = 32, the differential equation
satisfied by the mass’s displacement function x(¢) is now

2" 4+ 3x + 32y = F(1), @n

where F (1) is the periodic force function defined in Eq. (5). Figure 9.4.8 shows
graphs of both the steady periodic solition x, (1) for the original undamped system
of Example 1 and a numerically calculated solution of Eq. (21) with initial con-
ditions x(0) = 2 and A'(0) = 1. As an initial transient solution determined by
the initial conditions dies out, it appears that the damped solution x(r) converges
to a steady periodic solution of (21). However, we observe two evident effects of
the damping—the amplitude of the steady periodic oscillation is decreased, and the
damped steady oscillations lag behind the undamped steady oscillations. L
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EX] Problems

ind the steady periodic solution x,,(1) of each of the differen-
al equations in I through 6. Use a computer algebra svsiem
v plot enough terms of the series 1o determine the visual ap-
qarance of the graph of x,(1).

l. x" 4 5y = F(t), where F(1) is the function of period
27 such that F() = 3if0 <1 < . F(1) = =3 if
T<t < 2m.

2. x" + 10x = F(r), where F(r) isthe even function of pe-
riod 4 such that F(1) =31f0 <1 < |, F() = =3 if
|l <1 <2

3. x"+3x = F(1), where F(1) is the odd function of period
27 suchthat F(r) =21 ifO<r < .

bo x"44x = F(1), where F(1) isthe even function of period
dsuchthat F() = 2rif 0 <71 < 2.

5. "4 10x = F(1).where F(1) is the odd function of period
2suchthat F(1) =1 —12if0 <1 < 1.

b. x"+42x = F(1), where F(r)isthe even function of period
27 such that F(r) =sinrif0 <1 < 7.

1 each of Problems 7 through 12, the mass in and Hooke's
wistant k for a mass-and-spring svstemm are given. Deterrine
hether or not pure resonance will occur under the influence
Fihe given external periodic force F(1).

T.m=1k=29; F(r)is the odd function of period 27 with
Fity=1forO<r <.

8. m=2.k=10; F(1) is the odd function of period 2 with
Fity=1forO<rt < 1.

9. m = 3, k = 12, F(1) is the odd function of period 27
with F(1)=3forQ <t < 7.

Do m = 1.k =4x*; F(1)is the odd function of period 2 with
Fty=2ifor0 <r<1.

Lom = 3, k = 48; F(r) is the even function of period 27
with F(r)=rtforO <1t < 7.

2.m =2,k = 50; F(r) is the odd function of period 27
with F(t) =m1 — > for0 <1 <.

In eachof Problems 13 through 16, the values of i, ¢, and k for
a damped mass-and-spring svstem are given. Find the steacly
periodic motion—in the form of Eq. (16)—of the mass under
the influence of the given external force F(1). Compue the co-
efficients and phase angles for the first thiee nonzero terms in
the series for xp (1),

13. m=1,c =01,k =4; F(1) is the force of Problem 1.

4. m=2,¢c =01,k =18; F(r)isthe force of Problem 3.

15. m=3,c = L. k=30, F(1)isthe force of Problem 5.

16. m=1,¢c = 001, k =4, F(r)is the force of Problem 4.

17. Consider a forced damped mass-and-spring syslem with
m= '3 stug, ¢ = 0.6 Ib/ft/s. k =36 1b/fi. The force F(1)
is the period 2 (s) function with F (1) = 15if0 < 1 < 1,
F(1)y=—I15if | <1 <2. (a) Findthe steady periodic
solution in the form

Yeplt) = z b, sin(nxt — a,).

n=l|

(b) Find the location—to the nearest tenth of an inch—of
the mass when 1 =5 s.

18. Consider a forced damped mass-and-spring system with
m = 1,¢c = 00l, andk = 25. The force F(1) is the
odd function of period 27 with F(1) = 1if0 <1 < 71/2,
Fit) =m —1ifn/2 <t < n. Find the steady periodic
motion; compute enough terms of its seriesto see that the
dominant frequency of the motion is five times that of the
external force.

19. Suppose the functions f(r)and g(1) are periodic with pe-
riods P and Q, respectively. If the ratio P/Q of their pe-
riods is a rational number, show that the sum f (1) + g(1)
is a periodic function.

20. If p/q isirmational, prove that the function f(r) =cos pr+
cos gf is not a periodic function. Steggestion: Show that
the assumption f(r+L)= f(r) would (upon substituting
1 = 0) imply that p/q is rational.

m Heat Conduction and Separation of Variables

The most important applications of Fourier series are to the solution of partial differ-
ential equations by means of the method of separation of variables that we introduce
in this section. Recall that a partial differential equation is one containing one or
more partial derivatives of a dependent variable that is a function of at least two
independent variables. Anexample is the one-dimensional heat equation

S i - k(’)zu )
dr axY’

in which the dependent variable » is an unknown function of x and ¢, and k is a
given positive constant,
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Adlx, 1) N Ap(x+Ax, 1)

X X+ Ay

FIGURE 9.5.1. Net flow of heat
into a short segment of the rod.

The Heated Rod

Equation (1) models the variation of temperature # with position x and time s in a
heated rod that extends along the x-axis. We assume that the rod has uniform cross
section with area A perpendicular to the axis and that it is made of a homogeneous
material. We assume further that the cross section of the rod is so small that « is
constant on each cross section, and that the lateral surface of the rod is insulated so
that no heat can pass through it. Then iz will, indeed, be a function of x and 1, and
heat will flow along the rod in only the x-direction. In general, we envision heat as
flowing like a fluid from the warmer to the cooler parts of a body.

The heat flux ¢ (x, 1) in the rod is the rate of flow of heat (in the positive x-
direction) at time  across a unit area of the rod’s cross section at x. Typical units for
¢ are calories (of heat) per second per square centimeter (of area). The derivation
of Eq. (1) is based on the emmpirical principle that

- b= K811 2
B ox’ )

where the positive proportionality constant K is called the thermal conductivity
of the material of the rod. Note that if 1, > O, then ¢ < 0, meaning that heat is
flowing in the negative x-direction, while if 1, < 0, then ¢ > 0, so heat is flowing
in the positive x-direction. Thus the rate of heat flow is proportional to |«, |, and the
direction of heat flow is in the direction along the rod in which the temperature  is
decreasing. In short, heat flows from a warm place toa cool place, not vice versa.

Now consider a small segment of the rod corresponding to the interval [x, x +
Ax), as shown in Fig. 9.5.1. Therate of low R (incalories per second) of heat into
this segment through its tvoends is

R=A¢d(x, 1) — Ad(x+ Ax,t) = KAu, (x+ Ax,t) —u,(x, 0] (3)

The resulting time rate of change u, of the temperature in the segment depends
on its density § (grams per cubic centimeter) and specific heat ¢ (both assumed
constant). The specific heat ¢ is the amount of heat (in calories) required to raise by
1° (Celsius) the temperature of 1 g of material. Consequently ¢du calories of heat
are required to raise 1 cm® of the material from temperature zero to temperature .
A short slice of the rod of length dx has volume A d/x, so ¢8u A dx calories of heat
are required to raise the temperature of this slice from Q tour. The heat content

Xt Ax
o) = f cSAul(x.t)dx (4)

of the segment [x,x 4+ Ax] of the rod is the amount of heat needed to raise it from
zero temperature to the given temperature 1 (v, 1). Because heat enters and leaves
the segment only through its ends, we see from Eq. (3) that

Q'(1) = K Aluy (x + Ax, 1) — e (x, 0], (5)

because R = d Q/dz. Thus by differentiating Eq. (4) within the integral and apply-
ing the mean value theorem for integrals, we see that

+Avx
o' = f eSAu, (x, 1) dx = c6Au, (X,1) Ax (6)

e el
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for somex in (x, x 4+ Ax). Upon equating the values in Egs. (5) and (6), we get

CSAU (X 1) AY = KA[u (x + Ax, 1) — ny(x,1)], (7
S0
0L 1) = k““' (x + Ax, 1) —u (x, 1), 8)
Ax
where
K
k= — 9
pr: %)

is the thermal diffusivity of the material. We now take the limit as Ax — O, so
X — X (because X lies in the interval [x, x + Ax] with fixed left endpoint x). Then
the two sides of the equation in (8) approach the two sides of the one-dimensional
heat equation

du 971
— =k—. (N
ot ox=

Thus the temperature #(x, 1) in the thin rod with insulated sides must satisfy this
partial differential equation.

Boundary Conditions

Now suppose that the rod las finite length L, extending from x = O tox = L.
Its temperature function « (x,t) will be determined among all possible solutions
of Eq. (1) by appropriate subsidiary conditions. In fact, whereas a solution of an
ordinary differential equation involves arbitrary consranis, a solution of a partial
differentialequation generally involves arbitrary functions. In the case of the heated
rod, we can specify its temperature function f(x) at time + = 0. This gives the
initial condition

1(x,0)= f(x). (10)

We may also specify fixed temperatures at the two ends of the rod. For instance, if
each end were clamped against a large block of ice at temperature zero, we would
have the endpoint conditions

1w0,0)y=u(L.t)=0 (for all + > 0). (tn

Combining all this, we get the boundary value problem

0 9’u
bir’ _ ka.\-l; O<x <L, 1>0) (12a)
» u(0,1) = u(L,t) =0, (> 0), (12b)

u(x,0) = f() O<x <L) (12¢)
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=0 =0

FIGURE 9.5.2. A geometric
interpretation of the boundary
value problem in Eqs. (12a)—(12c).

Solution

we=flxy L A

Figure 9.5.2 gives a geometric interpretation of the boundary value problem
in (12): We are to find a function u(x. 1) thatis continuous on the unbounded strip
(including its boundary) shaded in the xs-plane. This function must satisfy the
differential equation in (12a) at each interior point of the strip, and on the boundary
of the strip must have the values prescribed by the boundary conditions in (12b) and
(12¢). Physical intuition suggests that if f(x) is a reasonable function, then there
will exist one and only one such function z(x, ¢).

Instead of having fixed temperatures. the two ends of the rod might be insu-
lated. In this case no heat would flow through either end, so we see from Eq. (2)
that the conditionsin (12b) would be replaced inthe boundary value problem by the
endpoint conditions

w0, =u, (L, t)=90 (13)

(for all ). Alternatively, the rod could be insulated at one end and have a fixed
temperature at the other. This and other endpoint possibilities are discussed in the
Problems.

Superposition of Solutions

Note that the heat equation in (12a) is linear. That is, any linear combination
n = ¢y + oy of two solutions of (12a) is also a solution of (12a); this fol-
lows immediately from the linearity of partial differentiation. It is also true that if
uy and 1> each satisfy the conditions in (12b), then so does any linear combina-
tion « = cjuy + ca2u>. The conditions in (12b) are therefore called homogeneous
boundary conditions (though a more descriptive term might be linear boundary con-
ditions). By contrast, the final boundary condition in (12¢) is not homogeneous; it
is a nonhomogeneous boundary condition.

Our overall strategy for solving the boundary valie problem in (12) will be
to find functions uy, 112, i3, ... that satisfy both the parial differential equation
in (12a) and the homogeneous boundary conditions in (12b), and then attempt 0
combine these functions by superposition, as if they were building blocks, in the
hope of obtaining a solution« = ¢yu; +catea+ - - thatsatisfies the nonhomogeneous
condition in (12c)as well. Example 1 illustrates this approach.

It is easy to verify by direct substitution that each of the tunctions
uilx.t) =e "sinx,  w(x, 1) = e~ Vsin2x, and us(x,f) = e sin3x

satisties the equation 1, = u,,. Use these functions to constiuct a solution of the
boundary value problem

a3l

% = 8,\'12 O<xy<m, t=0) (143
w0, =u@r,1)=0, (i14b)
i(x, 0) = 80sin® x = 60sinx — 20sin 3x. (14<)

Any linear combination of the form

u(x, ) =cylx, 1)+ caa(x, )+ ey, )

4

—_— . — . o § .
=cie7 sinx + e ¥ sin2v + e3¢ sin3x

k
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satisfies both the differential equation in (14a) and the homogeneous conditions in
(14b). Because

n(x, 0) =cysinx +c¢281in 2y + ¢3 sin 3y,

we see that we can also satisfy the nonhomogeneous condition in (14¢) simply by
choosing ¢; = 60,2 = 0, and ¢; = —20. Thus a solution of the given boundary
value problem is

u(x, 1) = 60e 'sinx — 20e™%" sin 3x. = |

The boundary value problem in Example 1 is exceptionally simple in that only
a finite number of homogeneous solutions are needed to satisfy by superposition the
nonhomogeneous boundary condition. [t is more usual that an infinite sequence 1,
1y, u3, ... of functions satisfying (12a) and (12b) is required. If so, we write the
infinite series

o]

> ulx, r)y= Zc,,u,,(x,r) (15)

n=1

and then attempt to determine the coefficients ¢y, ¢, ¢3, ... in order to satisfy (12c)
aswell. The following principle summarizes the properties of this infinite series that
must be verified to ensure that we have a solution of the boundary value problem in

(12).

PRINCIPLE  Superposition of Solutions

Suppose that each of the functions u, 19, us, . .. satisfies both the differential
equation in (12a) (for0 < x < L and ¢t > 0) and the homogeneous conditions
in (12b). Suppose also that the coefficients in Eq. (15) are chosen to meet the
following three criteria:

1. For 0 < x < Landt > 0, the function determined by the series in (15)
is continuous and termwise differentiable (once with respect to ¢ and twice
with respect to x).

[o.4]

2. Zc,,u,l(x,())z fx) for0<x < L.
n=1

3. The function u(x, 1) determined by Eq. (15) interior to the strip 0 £ x £
L and+ = O, and by the boundary conditions in (12b) and (12c) on its
boundary, is continuous.

Then 1¢(x, t) is a solution of the boundary value problemin (12).

In the method of separation of variables described next, we concentrate on
finding the solutions u y, 112, 13, ... satisfying the homogeneous conditions and on
determining the coefficients so that the series in Eq. (15) satisfies the nonhomoge-
neous conditions upon substitution of 1 = 0. At this point we have only a formal
series solution of the boundary value problem—one thatis subject to verification of
the continuity and differentiability conditions given in part (1) of the superposition
principle stated here. If the function f(x) in (12¢) is piecewise smooth, it can be
proved thata formal series solution always satisfies the restrictions and, moreover,
is the unique solution of the boundary value problem. For a proof, see Chapter 6 of
R. V. Churchill and J. W. Brown, Fourier Series and Bomdary Valie Problems, 3rd
ed. (New York: McGraw-Hill, 1978).
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Separation of Variables

This method of solving the boundary value problem in (12) for the heated rod was
introduced by Fourier in his study of heat cited in Section 9.1. We first search for
the building block functions ny, s, 13, ... that satisfy the differential equation
1, = ki, and the homogeneous conditions 1¢(0,1) = u(L, ) = 0, with each of
these functions being of the special form

> ux. )= XTq) (16)

in which the variables are ““separated”—that is, each of the building-block functions

is a product of a function of position x (only) and a function of time ¢ (only). Sub-

stitution of (16) in 11, = ku, yields XT' = kX”T, where for brevity we write T’

for T'(r) and X" for X" (x). Division of both sides by AX T then gives
X// T/

> = —.
X kT

(7

The left-hand side of Eq. (17)isa function of v alone, but the right-hand side is a
function of 7 alone. 1f ¢ is held constant on the right-hand side, then the left-hand
side X”/X must remain constant as v varies. Similarly, if x is held constant on
the left-hand side, then the right-hand side 7'/kT must remain constant as t varies.
Consequently, equality can hold only if each of these two expressions is the same
constant, which for convenience we denote by —A. Thus Eq. (17) becomes

X!/ T/
L= = -, (18)
X kT
which consists of the twoequations
X"(x) + A X(x) =0, (19)
T'(t) + 2T(@) =0. (20)

It follows that the product function u(x, 1) = X (x)T () salisfies the partial differen-
tial equation 1, = kun,, if X(x) and 7'(r) separately satisty the ordinary differential
equations in (19) and (20) for some (common) value of the constant A.

We focus first on X (x). The homogeneous endpoint conditions are

n(x,H)=XO0O7T)=0, ull, )= XUT@)=0. 20

If 7(1) is to be a nontrivial function of 1, then (21) can hold only if X(0) = X(L) =
0. Thus X (x) must satisty the endpoint value problem

X"+ 21X =0, 22
X0 =0, X{L)y=0.

This is actually an eigenvalue problem of the type we discussed in Section 38

Indeed, we saw in Example 3 of that section that (22) has a nontrivial solution if

and only if A is one of the eigenvalues

1.2
n-mw-

”:T’ 1131,2,3,...,

23)
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and thatan eigenfunction associated with 4, is

X,,(x):sin?, n=1,2.3.. ... (24)

Recall that the reasoning behind (23) and (24) is as follows. If A = 0, then
(22) obviously implies that X (v) = 0. If A = —® < 0, then

X(x) = Acoshax + Bsinh ax,

and then the conditions X (0) =0 = X (L) imply that A = B = 0. Hence the only
possibility for a nontrivial eigenfunction is that A = > > 0. Then

X(x) = Acosax + Bsinayx,

and the conditions X (0) =0 = X(L) then imply that A = 0 and thate = nin /L
for some positive integer 1. (Whenever separation of variables leads to an unfa-
miliar eigenvalue problem, we generally must consider separately the cases A = 0,
A=-a’ <0, andr=a’ > 0.)

Now we turn our attention to Eq. (20), knowing that the constant A must be
one of the eigenvalues listed in (23). For the nth of these possibilities we write
Eq.(20)as

, a2k
’T” + T"Tn = 01 (25)

in anticipation of a different solution 7,,(z) for each different positive integer n. A
nontrivial solution of this equation is

T,(t) =exp(—n’zki/L?). (26)

We omit the arbitrary constant of integration because it will (in effect) be inserted
later.

To summiarize our progress, we have discovered the two associated sequences
{X,}§° and {T,,) of functions given in (24) and (26). Together they yield the sc-
quence of building-block product functions

(v, 1) =X, ()T, (1) =exp (—nznzkt:.-’Ll) sin % 2n

n = 1,2,3,.... Eachof these functions satisfies both the heat equation ¢, =
kit and the homogeneous conditions (0, 1) = w(L,t) = 0. Now we combine
these functions (superposition) to attempt o satisfy the nonhomogeneous condition
u(x, 0) = f(x)as well. We therefore form the infinite series

oo (=9
. nax

u(x, 1) = Z Cptty (¥, 1) = Z € EXP (—nzrrzkr/Lz) sin — (28)

n=l n=1
It remains only to determine the constant coefficients {¢,}§° so that
>0
v . X
n(x, 0) = Z ¢y Sin E = f{x) 29

n=I
for0 < x < L. But this will be the Fourier series of f(x) on [0, L] provided that
we choose

2 L
> Gy = bn = - f(\) sin
L Jo

niw

L"' dx (30)

foreachnn =1,2,3,. ... Thus we have the following result.
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Material . k (cm?/s)
Silver 1.70
Copper 1.15
Aluminum 0.85
Iron 0.15
Concrete 0.005

FIGURE 9.5.3. Some thermal
diffusivity constants.

Solution

THEOREM 1 The Heated Rod with Zero Endpoint Temperatures

The boundary value problem in (12) for a heated rod with zero endpoint temper-
atures has the formal series solution

2 s oy ooy . NTTX
> u(x, 1) =" by exp(-n’r’ki/L?)sin < 31)

n=1

where the {b,} are the Fourier sine coefficients in Eq. (30) of the rod’s initial
temperature function f(x) =u(x, 0).

Remark: Bytakingthe limitin (31)termwiseass — oo, we get u(x, 00) =
0, as we expect because the two ends of the rod are held at temperature zero. a

The series solution in Eq. (31) usually converges quite rapidly, unless ¢ is very
small, because of the presence of the negative exponential factors. Therefore it is
practical for numerical computations. For use in problems and examples, values of
the thermal diffusivity constant k for some common materials are listed in the table
in Fig.9.5.3.

Suppose that a rod of length L = 50 cm is immersed in steam until its temperature
is g = 100° C throughout. At time 1 = O, its lateral surface is insulated and its two
ends are imbedded in ice at 0°C. Calculate the rod’s temperature at its midpoint
after half an hour if itis made of (a) iron: (b) concrete.

The boundary value problem for this rod’s temperature function u(x, 1) is

U = kit
w(O,8)=u(L,1) =0
u(x,0) = uy.

Recall the square-wave series

) 4 1 not +1 if O<r<L,
n=-=> =
S) -

San L |-1 if ~-L<1<0

that we derived in Example 1 of Section 9.2. It follows that the Fourier sine series
of f(x) =ugis
durgy 1 . nmrx

flxy = — —sin —

7T nodd " L

for 0 < x < L. Hence the Fourier coefficients in Eq. (31) are given by

{
— forn odd,
0 forn even,

and therefore the rod’s temperature functionis given by

digg 1 ( nzzrzkt) . onmy
u(x,t) = — —exp|— sin .

L? L



9.5 Heat Conduction and Separation of Variables 623

Figure 9.5.4 shows a graph v = u(x,1) withuy= 100and L = 50. As 1 increases,
we see the maximum temperature of the rod (evidently at its midpoint) steadily
decreasing. The temperature at the midpoint v = 25 afler+ = 1800 seconds is

400 - n+1 I 2.2y
u(25. 1800) = -0 §~ (=1 exp(— 8”7: A).

n odd n

(a) With the value £ = (.15 that was used in Fig. 9.5.4, this series gives
(25, 1800) = 43.8519 — 0.0029 + 0.0000 — - - - = 43.85°C.
This value u(25, 1800) ~ 43.85 is the maximum height (at its midpoint v = 25)

of the vertical sectional curve 1 = u(x, 1800) that we see at one “‘end” of the
temperature surface shown in Fig. 9.5.4.

(b) With k = 0.005 for concrete, it gives

(25, 1800) =~ 122.8795 — 30.8257 + 104754 — 3.1894
+0.7958 — 0.1572 +0.0242 — 0.0029
+0.0003 — 0.0000+ - -+ =~ 100.00°C.

Thus concrete is a very effective insulator. |

100

Temp i

50

. X {cm)

FIGURE 9.5.4. The graph of the temperature function « (v, t) in Example 2.

Insulated Endpoint Conditions

We now consider the boundary value problem

] PR
Pk 0<x <L, 1>0) (324)
oz 0x-
>
x(O,8) =u(L,1) =0, (32b)
u(x,0)= f(x), (320)

which corresponds to a rod of length L with initial temperature f(x), but with its
two ends insulated. The separation of variables te(x, ) = X(x) T (1) proceeds as in
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Eqgs. (16) through (20) without change. But the homogeneous endpoint conditions
in (32b) yield X'(0) = X'(L) = 0. Thus X(x) must satisfy the endpoint value
problem

X"+ 21X =0 (33
X(0)=0, X(L)=0. )
We must again consider separately the possibilities 1 = 0, A = —a* < 0, and

A =a’ > 0 for the eigenvalues.

With A = 0, the general solutionof X” = 01is X (x) = Ax + B, s0 X'(x) =
A. Hence the endpoint conditions in (33) require A = 0O, but B may be nonzero,
Because a constant multiple of aneigenfunction is an eigenfunction, we can choose
any constant value we wish for B. Thus, with B = 1, we have the zero eigenvalue
and associated eigenfunction

)L() = 0, X()(.\') = . (34)

With 4 = 0in Eq. (20), we get T'(7) = 0, so we may take To(r) = 1 as well.
With . = —a? < 0, the general solution of the equation X” —@’X = Qis

X(x) = Acoshoy + Bsinhaux,
and we readily verify that X'(0) = X'(L) = 0 only if A = B = 0. Thus there are
no negative eigenvalues.

With A = 2 > 0, the general solution of X” +a>X =01is

X(x) = A cosx + Bsinax,

X'(x) = —Aasinax + Bacosax.
Hence X'(0) = 0 implies that B = 0, and then
X'(L) = — AxsinaL =0
requires that ¢ L be an integral multiple of 7. because ¢ # 0 and A # 0 if we are

to have a nontrivial solution. Thus we have the infinite sequence of eigenvalues and
associated eigenfunctions

nir nax
Ap = az% = 2 Xu(x) = cos L (35)
forn = 1,2, 3,.... Justas before, the solution of Eq. (20) with A = n*z2/L* is

T, (1) = exp (—n*a2ke/L?).
Therefore, the product functions satisfying the homogeneous conditions are

ngx

mlx, ) =1; u,(x,1)=exp (nznzkt/Lz)cos (36)
forn =1, 2, 3, .. .. Hence the trial solution is
«~ nwx
n(x, 1) =cy+ Z €,y EXP (—nzfrzkt/Lz) coS —— (37

n=1
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"IGURE 9.5.5. The graphofthe
nitial temperature function
H(x,0) = f(x)in Example 3.
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To satisfy the nonhomogeneous condition u(x,0) = f(x), we obviously want
Eq. (37) to reduce when ¢ = 0 to the Fourier cosine series

o .
S =2+ Z,: €08 % (38)
where
2 [t X
> a, = z/o f () cos _mzl dx €2))
forrn =0,1,2,.... Thus we have the following result.

THEOREM 2 Hedated Rod with Insulated Ends

The boundary value problem in (32) for a heated rod with insulated ends has the
formal series solution

o0
> ulx, 1) = _"22 + Za" eXP(—I12ﬂ2kt/L2)cos Iulzx “0)

n=l

where the {a,;} are the Fourier cosine coefficients in (39) of the rod’s initial tem-
perature function f(x) =u(x,0).

Remark: Note that

i (e, ) =20 = ' f(x) d @l
imux,n)=—=— x) dx,
=00 2 L~ )

the average value of the initial temperature. With both the lateral surface and the
ends of the rod insulated, its original heat content ultimately distributes itself uni-
formly throughout the rod. - |

We consider the same 50-cm rod as in Example 2, but now suppose that its initial
temperature is given by the “triangular function” graphed in Fig. 9.5.5. At time
1 = O, the rod’s lateral surface and its two ends are insulated. Then its temperature
function u(x, t) satisfies the boundary value problem

u, = kitey,
u (0,0 =u,(50,1) =0,
ulx,0) = fx).
Now substitution of L = 25inthe even triangular-wave series of Eq. (15) in Section

9.3 (where the length of the interval is denoted by 2L), followed by multiplication
by 4, yields the Fourier cosine series

2

400 ;
f(x) =50— Z lcos e

(for 0 < x < 50) of our initial temperature function. But in order to match
terms with the series in (40) with L = 50, we need to exhibit terms of the form
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cos(nm x/50) rather than terms of the form cos(nmwx/25). Hence we replace n with
n/2 throughout and thereby rewrite the seriesinthe form

Fle) =50 1600 ] nirx
X)= - — S :
: b 12 50

1=2.6.10.... "

note that the summation runs through all positive integers of the form 4 — 2. Then
Theorem 2 implies that the rod’s temperature function is given by

1600 | nrkt Hnix
Y1) =50— —exp - s L
e D O exP( 2500 )COq 50

n=26.10....

Figure 9.5.6 shows the graph # = «(x, 1) for the first 1200 seconds, and we see the
temperature in the rod beginning with a sharp maximum at the midpoint v = 25,
but rapidly “averaging out’” as the heat in the rod is redistributed with increasing 1.

a

Temp

1(s)

FIGURE 9.5.6. The graph of the temperature function #(x, 1) in Example 3.

Finally, we pointout that, although we sctup the boundary value problems in
(12) and (32) for a rod of length L, they also model the temperature u(x, 1) within
the infiniteslab0 £ x £ L in three-dimensional space ifits initial temperature f(x)
depends only on x and its two faces x = Qand x = L are either both insulated or
both held at tempcrature zero.

Solve the boundary value problems in Problems I through 12 41, =1, 0<x <, t >0 u0.1)=u=xn =0
x,0) =4sindvcos2x
Lu =3u,,0<x <m, 1t >0 u(0,1) = u(mr. 1) =0, e, 0 S Ar s s
1(x, 0) = 4sin 2x 5.0, =2, 0<x <3,1>0,u,0.0)=u,0n=0
200, =101, 0 < x <5.7>0;u,(0,1) = u, (5. 1) = 0. (v, 0) =4 cos iy - 2cos dmx
wix,) =7 ;
30, =2u.0<x < 1,1 >0:u(0,1) = u(l.r) = 0. 6.2, =, 0 < x < Lot >0 u(0.7) = u(l.) = 0,

u(x.0) = Ssinzy — & sindmx

ur.0) =4sinrxcos 7x
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3uy, =, 0 <x <2,t > 00u,(0.1) = u,2,1) =0,
w(x, 0) = cos” 2y

i, = .0 <x <21 >0:0u,0,1) = u,(2,1) =0.
w(x, 0) = 10cos rx cos 3mx

100, =u,,0 <x <5,1>0,u0,) =u5,0=0.
u(x,0) =25

Sup =iy, 0 < x < 10,1 > 0: w0, 1) = u(10.¢) = 0.
u(x, 0) =4x

Sty =1 0O< v < 10,1 > 0000,(0. 1) = 1, (10.4) = 0.
(v, 0) =4x

ty =1y,,0 < x < 100, 1 > O, u(0.r) = u(100.1) =0,
n(x, 0) = x(100 — x)

Suppose that a rod 40 cm long with insulated lateral sur-
face is heated to a uniform temperature of 100°C, and that
at time 1 = Qitstwo ends areembeddedinice a1 Q' C. (a)
Find the formal series solution for the termperature te(v.1)
of the rod. (b) In the casc the rod is made of copper.
show that after 5 min the temperature at its midpoint is
about 15°C. (¢) In the case the rod is made of concrete.
use the first term of the series to find the time required for
its midpoint to cool to 15°C.

A copper rod 50 cm long with insulated lateral surface has
initial temperature i (v. 0) = 21, andattime t = Qits two
ends are insulated. " (&) Find u(x. 1). (b) What will its
temperature be at x = 10 after | min? (c) After approsi-
mately how long willits temperature atx = [0be45°C?

The two faces of theslab 0 < v = L are kepl at tempera-
ture zero, and the initial temperature of the slab is given by
n(x,0) = A(aconstant) forO < x < L/2. u(x.0)=0
for L/2 < x < L. Derive the formalseries solution

ux, 1 =
4A & sinf(n/d)
— - e

niry

sp (—n?x 2kt /L7 sin
T 4~ n »
Two iron slabs are each 25 cim thick. Initially oneis at
temperature 100°C throughout and the otheris at temper-
ature 0°C. At time r = 0 they are placed face to face, and
their outer faces are kept at 0°C.
Problem 15 to verify that after a half hour the temperature
of their common face is approximately 22°C. (b) Sup-
pose (hat the two slabs are instead made of concrete. How
long will it be until their common face reaches a tempera-
ture of 22°C?

(Steady-state and transient termperatures) Leta laterally
insulated rod with initial temperature i (x . 0) = f(x) have
fixed endpoint temperatures u (), 1) = Aandu(L 1) = B.
(a) It is observed empirically that as 1 — +-00, u(x.1)
approaches a steady-state temperature u(x) that corre-
sponds to setting 1, = O in the boundary value problem.
Thus it,(x) is the solution of the endpoint value problem

~ny
a7,

— = ()
ax-

e (M) =A. w1 (L) =18.

(a) Usethe result of

18

19.
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Find i (x). (b) The transient temperature i, (x.7)is
defined to be

(X ) =u(v, 1) — ug ).
Show that u, satisfies the boundary value problem

0211,

At p
ar o axt’
1 (0. 1) =u(L. 1) =0,

he(x.0)=g)= fv) —uulv).

(¢) Conclude from the formulas in (30) ancl (31) that

u(x, 1) =u (x) 4+ (x, 1)

= . s nmx
=u.(x ' expl —nmokt/L) sin——,
() + ) e exp (=LY sin =

n=1
where

L )
[ f(x) = g (x)]sin %l dyx.
0

Cy = i
Suppose that a laterally insulated rod with tength L =50
and thermal diffusivity ¥ = 1 has initial temperature
i(x,0) = 0 and endpoint temperatures #(0.7) = O.
1(50,1 = 100. Apply the result of Problem 17 to show
that

n(y, 1y =

200 & (- ! 2, nmy
2y — — ———— exp(—n"Tk1/2500) sin —.
be ; n ! ( ) 50
Suppose that heat is generated within a laterally insulated
rod atthe rate of ¢ (x, 1) calories per second percubic cen-
timeter. Extend the derivation of the heat equation in this
section to derive the equation
dn 92 g(x. 1)
YR T a

. Suppose that current flowing through a laterally insulated

rod generates heat at a constant rate; then Problem 19
yields the equation

du 2
ar al

+ C.

Assume the boundary conditions 1¢(0,1) = (L. t) = 0O
and u(x.0) = f(x). (a) Find the steady-state tempera-
ture uy (x) determined by

d g
dx?

0=k +C. u (0) = u,(L)y=0.

(b) Show that the transient temperature

ue(x. 1) = ulxe. 1) —u(x)
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satisfies the boundary value problem to show that v(xv, r) satisfies the boundary value problem
) ) having the solution given in (30) and (31). Hence con-
By _ k Fuy clude that
or xr’ N
e©.0)=u (L, 1)=0 ue. ) =e" Zc exp (—n*m*kt/L*) sin e
trits r 1 . L £ n k L N
e (x,0) = g(x) = f(x) — ug(x).
where
Hence conclude from the formulas in (34) and (33) that 2k . onTx
G = —f flx)sin dx.
o0 . L 0 ~
- s . AAX ..
w(x, 1) = iy(x) + Zl'n exp (—m’mki/L?) sin 23. Consider a slab with thermal conductivity K occupying
n=1 theregion 0 = x £ L. Suppose that, in accord with New-
where ton’s law of cooling, each face of the slab loses heat to
the surrounding medium (at temperature zero) at the rate
o 3 L L) — e ()]sin nmwx I of H u calories per second per square centimeter. Deduce
“=71 0 ) T WO ISI T A from Eq. (2) that the temperature « (x, t) in the slab satis-

fies the boundary conditions
21. The answer to part (a) of Problem 20 is 11 (v) = Cx(L —

x)/2k.If f(x) = 0in Problem 20, so the rod being heated hu©O,0) —ue 0,0y = 0=1u(L,1) +u(L,1)
is initially at temperature zero, deduce from the result of
part (b) that whereh = H/K.
Cx 24. Suppose that a laterally insulated rod with length L, ther-
wix,t) = ?_k(L —X) mal diffusivity &, and initial temperature 1 (x,0) = f(x)
- is insulated at theend x = L and held at termperature zero
4CL? 1 13,y . HTX at v = 0. (a) Separate the variables to show that the
T k? ’% PR (= ki/L*) sin ' eigenfunctions are
22. Consider the temperature u(x, ) in a bare slender wire X, (x)=sin )
with «(0,1) = w(L,1) = 0 and «(x,0) = f(x). In- 2L
stead of being laterally insulated, the wire loses heat to a foriz odd. (b) Use the odd half-multiple sine series of
surrounding medium (at fixed temperature zero) at a rate Problem 21 in Section 9.3 to derive the solution
proportional to (v, ). (a) Conclude from Problem 19 ) .
that ‘1) = ; -k sin ——
o . u(x. 1) 'gl:dt,, exp (—n’rr’ki/4L?) sin ST
— =k— — hu,
at dx?
where /1 is a positive constant. (b) Then substitute where y L Ty
¢ = l/ Flx)sin —= dx.
w(n, 1) =e "y, 1) L Jy 2L

(YY) elllefe][s])] Heated-Rod Investigations

First let’s investigate numerically the temperature function

dig 1 ket nwx
xX.t)= —exp | — sin —
ute.1) T le Xp( L? ) "

n odd

of the heated rod of Example 2, having length L = 50 cm, uniform initial tem-
perature 1o = 100°C, and thermal diffusivity & = 0.15 (for iron). The following
MATLAB function sums the first N nonzero terms of this series.

function u = u(x,t)

k = 0.15; $ diffusivity of iron
L = 50; % length of rod
u0 = 100; % initial temperature

S = 0; % initial sum
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N = 50 % number of terms
n

for

il ~e

1:2:2%kN+1;

S = § +(1/n)*kexp (-n"2%pi~2xkxt/L"2).%*sin (nxpixx/L);
end
u = 4%ulxS/pi;

This function was used to plot Figs. 9.5.7 through 9.5.10. The corresponding Maple
and Mathematica functions are provided in the applications manual that accompa-
nies this text. As a practical matter, N = 50 terms sutfice to give the value u(x, 1)
after 10 seconds (or longer) with two decimal places of accuracy throughout the
interval 0 £ v £ 50. (How might you check this assertion?)

125 T | T T 50 T T T T
100 - b 40
5 B 30
50 N 20
25 10
0 | { 1 1 0
0 1020 30 40 50 0 10 20 30 40 50
\ RY
FIGURE 9.5.7. The graph of FIGURE9.5.8. The graph of
#(x, 30) giving rod temperatures u(x. 1800) giving rod temperature
after 30 seconds. after 30 minutes.
100 — 50.5 T T T T
90 |- - 50.4 + =
80 . S0.3+ -1
70 - . 50.2 n=u(25 1) —
60 u=u(25.1) | 5011 ]
= 50 4 = 50.0
40 . 49.9 - —
30 . 49.8 - -
20+ - 4.7 .
10+ | 49.6 —
0 Ll L | 49.5 | ! 1 L
0 2000 4000 6000 1570 1572 1574 1576 1578 1580
1 t
FIGURE 95.9. The graphof FIGURE 95.10. Magnification of
u(25, 1) giving the midpoint the graph of 1¢(25. 1) giving the
temperatures of the rod. midpoint temperatures of the rod.

The graph of n(x, 30) in Fig. 9.5.7 shows that after 30 seconds the rod has
cooled appreciably only near its two ends and still has temperature near 100°C for
10 € x = 40. Figure 9.5.8 shows the graph of « (x, 1800) after 30 minutes and
illustrates the fact (?7) that the rod’s maximum temperature is always at its midpoint,
where x = 25.

The graph of u(25, 1) for a two-hour period shown in Fig. 9.5.9 indicates that
the midpoint temperature takes something more than 1500 seconds (25 minutes) to
fallto 50°. Figure 9.5.10 shows a magpnification of the graph near its intersection
point with the horizontal line 1 = 50 and indicates that this actually takes about
1578 seconds (26 min 18 s).
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For your very own rod with constant initial temperature f(x) =75 = 100 1o
investigate in this manner, let

L=100+10p and k=14 (0.gq.

where p is the largest and ¢ is the smallest nonzero digit of your student 1D number.

1. If the two ends of the rod are both held at temperature zero, then determine
how long (tothe nearest second) it will take for the rod’s midpoint temperature
to fall to 50°.

2. If theend x = L of therod is insulated, but the end v+ = 0 1is held at tem-
perature zero, then the temperature function i (x,t) is given by the series in
Problem 24 of this section. Determine how long it will be until the maximum
temperature anywhere in the rod is 50°.

m Vibrating Strings and the One-Dimensional Wave Equation

F(X)Ax

|
|
|
1
|
|
|
|

|

P S ——

FIGURE 9.6.1. Forces on a short
segment of the vibrating string.

X ox+Ay X

Although Fourier systematized the method of separation of variables, (rigono-
metric series solutions of partial differential equations had appeared earlier in
eighteenth-century investigations of vibrating strings by Euler, d’Alembert, and
Daniel Bemoulli. To derive the partial differential equation that models the vi-
brations of a string, we begin with a flexible uniform string with linear density p
(in grams per centimeter or slugs per foot) stretched under a tension of 7 (dynes
or pounds) between the fixed points x = O and x = L. Suppose that, as the string
vibrates in the xyv-plane around its equilibrium position, each point moves parallel
to the y-axis, so we candenote by v(x, 1) the displacement at time of the point x of
the string. Then, for any fixed value of1, the shape of thestring at time / is the curve
y = y(x, ). We assume also that the deflection of the siring remains so slight that
the approximationsin & = tan® = y,(x, 1) is quite accurate (Fig. 9.6.1). Finally,
we assume that in addition to the internal forces of tension acting tangentially to the
string, it is acted on by an external vertical force with linear density F (x) in such
units as dynes per centimeter or pounds per foot.

We want to apply Newton's second law F = ma tothe short segment of string
of mass p Ax corresponding to the interval [.v, x + Ax], with ¢ being the vertical
acceleration y;, (¥,1) of its midpoint. Reading the vertical components of the force
shown in Fig. 9.6.1, we get

(PAY) -y, x, ) = Tsin(@+ Af) —Tsinf + F(x) Ax
Tvw(x + Ax 1) — Ty (x. 1) + F(¥) Ax,

so division by Ax yields

_ w(x+Ax ) —ve(x, t _
oy (v, 1) = T)'( A\)_ (. 1) + F ().

We now take limils in this equation as Ax — 0, so ¥ —> x (because X lies in the
interval [x, x + Ax] with fixed left endpoint .v). Then the two sides of the equation
approach the two sides of the partial differential equation

9y 9%y
Y1 4R (N
X~

>
Por =%
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that describes the vertical vibrations of a flexible string with constant linear density
p andtension T under the influence of an external vertical force with linear density

F(x).

If we set
a‘=— )
and set F(x) = 0inEgq. (1), we gel the one-dimensional wave equation

&y 2 8%y
> L= 3
PTERR T @

that models the free vibrations of a uniform flexible string.

The fixed ends of the string at the points ¥ = 0 and ¥ = L on the x-axis
correspond to the endpoint conditions

y0.0)=y(L.1)=0. @)

Our intuition about the physics of the situation suggests that the motion of the string
will be determined if we specify bothits initial position function

v, 0)=/,x) (O<x<l) o)
and its initial velocity function
yr(x,0) = g(x) (0<x <L) ()

On combining Eqs. (3) through (6), we get the boundary value problem

(;;;) = azg;’\z} O<x<L, >0 (72)

> v0,)=y(L,1)=0, (7b)
y,0)=f(x) O<x<lLl), (7c)

y,0)=gk) O<x<l) (7d)

for the displacement function y(x,7) of a freely vibrating string with fixed ends,
initial position f (x), and initial velocity g(x).

Solution by Separation of Variables

Like the heat equation, the wave equation in (7a) is linear: Any linear combination
of two solutions is again a solution. Another similarity is that the endpoint condi-
tions in (7b) are homogeneous. Unfortunately, the conditions in both (7¢) and (7d)
are nonhomogeneous; we must deal with nro nonhomogeneous boundary condi-
tions.

As we described in Section 9.5, the method of separation of variablesinvolves
superposition of solutions satisfying the homogeneous conditions to obtain a solu-
tion that also satisfies a single nonhomogeneous boundary condition. To adapt the
technique to the situation at hand, we adopt the “divide and conquer” strategy of
splitting the problem in (7) into the following two separate boundary value prob-
lems, each involving only a single nonhomogeneous boundary condition:
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Problem A Problem B
i =@yt Y= @y
v(0,n = xL.1)=0, v(0, 1) = »(L.1)=0.
v(x, 0) = f(x), r(x. 0) =0,
v(x. 0)=0. y(x, 0) = glx).

If we can separately find a solution y,(x, ) of Problem A and a solution ys(x, 1)
of Problem B, then their sum y(x, 1) = va(x.1) + vg(x, 1) will be a solution of the
original problem in (7), because

VL, 0)=ya(x, 0+ yp(x,0) = f(0) +0 = f(x)
and
Vi(6.0) = {yal (v, 0) +{xyp)i(x, 0) = 0+ g(x) = g(x).

Solet us attack Problem A with the method of separation of variables. Substi-
tution of

Y1) = X()TO) ¥

in y, =a’v,, yields X7T" = a2 X"T where (as before) we write X" for X" (v) and
T” for T"”(1). Therefore,

Xl/ TI!
X T aor ©

The functions X”'/X of x and T"/a*T of ¢ can agree for all x and 1 only if each is
equal to the same constant. Consequently, we may conclude that

X// TI/
—_— = — = =) 10
X a7 (10)

for some constant A; the minus sign is inserted herc merely to facilitate recognition
of the eigenvalue problem in (13). Thus our partial differential equation separates
into the two ordinary differential equations

X"+AX =0, (1)
T" 4+ 2a>T = 0. (12

The endpoint conditions
¥(0, 0 =XOT@)=0, y(L,r)=XULT0 =0

require that X (0) = X(L) = 0if T(1) is nontrivial. Hence X (x) must satisfy the
now familiar eigenvalue problem

X'"+2X=0, X0)=XL)=0. (13)

As in Egs. (23) and (24) of Section 9.5, the eigenvalues of this problem are the
numbers

1127[2
Ay = —, n=1,273,..., (14
I?
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and the eigenfunction associated with i, is

. onmy
X, (x)=sin - n=1,2,3,.... (15)

Now weturn to Eq. (12). The homogeneous initial condition
Y@, 0)=XWT'(0) =0

implies that 7°(0) = 0. Therefore, the solution 7, (r) associated with the eigenvalue
An = i’ /L must satisty the conditions

1.2 9
n-m-as

T, + = 0, T/0)=0. (16)

n

The general sotution of the differential equation in (16) is

njat . nwat
<+ B, sin

Tn(’) =AIICOS (17)

[ts derivative

. nwa . nmwat nrat
7,,(1)=T — A, sin T + B, cos 7

satisfies the condition 7,(0) = 0 if B, = 0. Thus a nontrivial solution of (16) is

nwat

7,(1) = cos T (18)

We combine the results in Egs. (15) and (18) to obtain the infinite sequence of
product functions

nFar | RAX
e )= X, ()T, (1) =cos sin ——, (19)
n =123, .... Each of these building block functions satisfies both the wave

. 2 . .
equation y,, = a” v,y and the homogeneous boundary conditions in Problem A. By
superposition we get the infinite series

nyat . nax
sin I 20)

o o
.Vn(-'\'~ 1) = ZAnxn (\)Tn(f) = ZA,,COS

n=1 n=1

It remains only to choose the coefficients {A,} to satisly the nonhoimogeneous
boundary condition

vie,00= A, sin ”% = f(x) )

n=1

for 0 < x < L. But this will be the Fourier sine series of f(x) on [0, L] provided
that we choose

9 L -

2 nx
> A, =— x)sin —dx. 22
L) S(x)sin 7 dx (22)
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olem -
o~
-

FIGURE 9.6.2. The initial
position of the plucked string of
Example 2.

Solution

Thus we see finally that a formal series solution of Problem A is

nnal . nAX
> va(x, 1) = ZA,,COS sin—=, (23)

n=I

with the coefficients {A,}5" computed using Eq. (22). Note that the series in (23)
is obtained from the Fourier sine series of f(x) simply by inserting the factor
cos(nrrar/L) in the nth term. Note also that this term has (circular) frequency
wy, =nma/L.

It follows immediately that the solution of the boundary value problem
?y 3%y
de? dx2

v(0, 1) = y(@, 1 =0,

O<x <m, r=>0)

y(x,0) = & Lgin® v = 2 siny — & sin3ux,

10 a0 )
yi{x, 0) =
forwhichL =manda =2, is

yix,t)= 2 cos 27 sinx —

0 4()005 6t sin3x.

Thc reason is that we are given explicitly the Fourier sine series of f(x) with A} =

Az = and A, = 0 otherwise. [ |

4() ’ -l() ’

A plucked string Figure 9.6.2 shows the initial position function f(x) for a
stretched string (of length L) that is set in motion by moving its midpoint x = L/2
aside the distance 1bL and then releasing it from rest at time 1 = 0. The corre-
sponding boundary value problem is

Vi = a% Veu O<x <L, t>0)

v, 1) = y(L.,n =0,
yx, 0) = f(),
.vl('x! 0) - 0»

where f(x) =bx for0 <y < L/2and f(x) = b(L — x)for L/2 £ x £ L. Find
y(x, ).

The nth Fourier sine coefficient of f(x)is

Ay

II

f f0 sm———-d\

i

2 [t naTx 2 - nmx
— by si {x -+ — b(L — x)sin —dv;
L/o sin I dx + 7 /L/z ( x) I

it follows that
4bL | nn
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Hence Eq. (23) yields the formal series solution

41)L§ | . nrm nrat . nwx
= si

"X, f) = — S1n — S < —_—
v(x, ) = 2 o sin 7 cos I 13
4bL Tat . TX | o 3mar . 3mx n 04)
= 0§ —— Sin — — — cos §in —— + -+ ). 2
m? L L 3? L L
|
Music

Numerous familiar musical instruments employ vibrating strings to generate the
sounds they produce. When a string vibrates with a given frequency, vibrations at
this frequency are transmitted through the air—in the form of periodic variations in
air density called sound waves—to the ear of the listener. For example, middle C
is a one with a frequency of approximately 256 Hz. When several tones are heard
simultaneously, the combination is perceived as harmonious if the ratios of their
frequencies are nearly ratios of small whole numbers; otherwise many perceive the
combinations as dissonant.

The series in Eq. (23) represents the motion of a string as a superposition of
infinitely many vibrations with different frequencies. The nth term

nrwatr ., 0Ix

sin —
L

A, cos
represents a vibration with frequency

@ _ nwafl _ " 1 (H2). 25)
21 2t 2L\ p

Vv, =

The lowest of these frequencies,

Z (Hz), (26)
0

\)] = -
2L
is called the fundamental frequency, and it is ordinarily predominantin the sound
we hear. The frequency v, = nv of the nth overtone or harmonic is an integral
multiple of vy, and this is why the sound of asingle vibrating string is harmonious
rather than dissonant.

Note in Eq. (26) that the fundamental frequency vy is proportional to VT and
inversely proportional to L and to ,/p. Thus we can double this frequency—and
hence gel a fundamental tone one octave higher—either by halving the length L
or by quadrupling the tension 7. The initial conditions do nor affect vy; instead,
they determine the coefficients in (23) and hence the extent to which the higher
harmonics contribute to the sound produced. Therefore the initial conditions atfect
the timbre, or overall frequency mixture, rather than the fundamental frequency.
(Technically this is true only for relatively small displacements of the string; if’ you
strike a piano key rather forcefully you can detect a slight and brief initial deviation
from the usual frequency of the note.)

According to one (rather simplistic) theory of hearing, the loudness of the
sound produced by a vibrating string is proportional to its total (kinetic plus poten-
tial) energy, whichis given by

Lot ay\> v\’
E=- D) w7 () |ax. 27
2/0 ”(ar) N (ax> ‘ “7
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Example 3

reached. But then v(r,0) = X(x)T(0) = 0 implies that T(0) = 0, so instead of
(16) we have

d*T,  n?n’a?
7 + ol
dr- L-

—T=0. T,(0 =0. (3h

From Eq. (17) we see that a nontrivial solution of (31) is

. nmat

7,(1) = sin (32)
The resulting formal power series solution is therefore of the form
> ) i B g TGl T (13)
vy, 1) = sin 5 .
n=I ! L L
so we want to choose the coefficients {B,,} so that
nra ., NIy

(x.0)= ZB,, sin —— = g(v). (34)

n=1

Thus we want B, - nzra/L to be the Fourier sine coefficient b, of g(x) en [0, L]:
nma 2 [k nrrx
B,——=b,=— f g(x)sin A dx.

Hence we choose

2 L
> Bn -
naa fy

1nIx

¢(x) sin — v (35)
L

in order for vg(x, 1) in (33) to be a formal series solution of Problem B—and thus

for v(x, 1) = vy(x,1) + yg(x, 1) 10 be a formal series solution of our original

boundary value problem in Eqs. (7a)-(7d).

Consider a string on a guitar lying crosswise in the back of a pickup truck that at
time r = 0 stams into a brick wall with speed vy. Then g(x) = v, so

2 L nnx 2uyL
B, = — Vg Sin = [l - (= ]
nrra Jo L wata

Hence the series in (33) gives

dvgL . onwat . nwx

yle, )= E ——sm $in ——. 15
72a n? L

nodd

If we differentiate the series in (33) termwise with respecttot, we get

O
RS !
= Zb,, sin EZL cos ”TZI = % IGlx—4arn + G —an)]. (36)

n=|1

vilx.r)
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where G is the odd period 2L extension of the initial velocity function g(x), using
the same device as in the derivation of Eq. (30). In Problem 15 we ask you to deduce

that
I
vix.t)= 5 [H(x4at)+ H(x —at)], 3N
2a
where the function H (x) is defined to be
X
H(y) = f G(s)ds. (38)
0
If, finally, a string has both a nonzero initial position function y(x.0) = f(xv)

and a nonzero initial velocity function y, (x, 0) = g(x), then we can obtain its dis-
placement function by adding the d’ Alembert solutions of Problems A and B given
in Egs. (30) and (37), respectively. Hence the vibrations of this string with general
initial conditions are described by

1 1
vy, = 5 [Flx+at) + Fx —at)] + 7—a[H(.\' +a)+Hx—an|, (39

a superposition of four waves moving along the x-axis with speed «, two moving to
the left and two to the right.

m Problems h

e the boundary value problems in Problems | thiough 10.

- Y =4_\\\,0 <x<a, >0y, = vt =0,

of the string of Example 3is

L L 4v L vol
)‘(.\',0)_—51117\ y(x,00=0 hY 2 ) Z—:L—.
10 2 T n? 24
._\',,=_v“0<\<]t>()\(01 ) = v(l.n) =0, i old
i, 0) = m sin ¢ ”_" sin 3y, yi (v, 0y =0 If the string is the stiring of Problem 11 and the impact
. 4.\7” = Yy, D<x <, t > .\‘(0. 1) = .\(7[. 1 =0,

v(x, 0) =y, 0) = msm X

Ay, =y, 0<x < 2,0 > 05 (0.0 = v =0,
y(x.0) = {sinmx cosax, y (v, 0) =0

v Vi __5\7‘\,() <x <3, >0v0,1n0=y3n1n=0,
y(x.0) = 381“7(.\ y(x, 0) = 10sin2xx

ey =100y, O<x <m,t > 0;v0,0) = y(x,1)
y(x.0) =x(@—x), yx,0=0

ey =100y, 0 <x < 1,7 >0;v0,n) =v(,1) =0,
v, 0 =0, y(x,0)=x

ey =4y, 0 <x <, 1> 0 00,0 =
v(x, 0) = sinx, y,(x,0) =1

Y =4y 0<x < Lt >0 x0,n =y, =0,
v(x, 0 =0, 3,0 =x{ -x)

oy =25v0 <x <t > 0590, =y, ) =0,
y(x, 0) = y,(x,0) =sin’

. Suppose that a string 2 ft long weighs 75 oz and is sub-
jecled to a tension of 32 Ib. Find the fundamenml fre-
quency with which it vibrates and the velocity with which
the vibration waves travel along it.

I
=)
S

y(m, 1)

I
o
S

. Show that the amplitude of the oscillations of the midpoint

14.

15,

speed of the pickup truck is 60 mi/h, show that this am-
plitude is approximately Iin.

. Suppose that the function F'(x) is twice differentiable for

all x. Use the chain rule to verify that the functions

vy, = F(x4at) and y(x.7)= F(x—ua1)

satisfy the equation v, = a3V,

Given the differentiable odd period 2L function F(x),
show 1hat the function

v,y =1 [F@+an+ Fx —an]
satisfies the conditions v (0, 1) = y(L,1) =0, y(x,0) =

F(x),and y,(x.0) = 0.
If y(x,0) = 0,1hen Eq. (36) implies (why?) that

1 t
yix,1)= 1; f G +at)dr + %/ G(x—art)dr.
0 0

Make appropriate subslitutions in these integrals to derive
Eqs. (37)and (38).
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16.

17.

18.

Problems 19 and 20 deal witli the vibrations of a string under

Chapter 9 Fourier Series Methods

(a) Show that the substitutions n = x +ar andv = x —at
transform the equation v, = a°v,, into the equation
v, = 0. (b) Conclude that every solution of v, = asy,,
is of the form

vix.1)=FQ +aty+ G - at).
which represents two waves traveling in opposite direc-
lions, each with speed a.

Suppose that

nrx
L

& nwat .
)‘(.\'.t):ZA,,cos 7 sin

n=1

Square the derivatives y, and y, and then inlegrate
termwise—applying the orthogonality of the sine and co-
sine functions—to verify that

2 N

| L 2 7 =T 2.0
;/(; (p\’,'-l-T\’;)d\ = IZ”_A;.

- n=1

E=

Consider a stretched string, initially at rest; its end at
x = 0 is fixed, but its end at v = L is partially free—it
is dllowed to slide without friction along the vertical line
x = L. The corresponding boundary value problemis

V= u:_\'“. OD<x<L, 1t >0
0.0 =y (L,1)=0,
v(x,0) = f(x).

y(x,0)=0.

Separate the variables and use the odd half-multiple sine
series of f(x). as in Problem 24 of Section 9.5, to derive
the solution

nwat | nwx
y(x.1) = Z A,cos sin .
: 2L

i odd 2L
where .
2 [ nmax
A, =— X) sin ——dx.
=), Jesing

the influence of the downward force F(x) = —pg of gray-
irv. According to Eq. (1), its displacement function saisfies the
partial differential equation

Y L07y
— =4 — —-g 40
arr a8 0

with endpoint conditions y(0.1) = y(L,1)=0.

19.

Suppose first that the string hangs in a stalionary position.
so that y = v(x) and y,, = 0, and hence its differential
equation of motion takes the simple form «’y" = g. De-
rive the stationary solution

gx

y(x) =¢(x) = o

(v — L).

20.

21.

Now suppose that the string is released from rest in equi-
librium; consequently the initial conditions are y(x. 0) =
0 and y,(x.0) = 0. Define

v(, 1) = v ) — @y

where ¢(x) is the stationary solulion of Problem 19. De-
duce from Eg. (40) that v(x. ) satisfies the boundary
value problem
by =av,

0.1y =v(L.1)=0.

v(x.0)=—¢ ().

v (r.0)=0.
Conclude from Eqs. (22) and (23) that

nmat

yx.)— @) = ZA,, Cos

n=|

sin —,

L

where the coefficients {A,} are the Fourier sine coeffi-
cients of f(x) = —¢(x). Finally, explain why it follows
that the string oscillales between the positions ¥y = 0 and
vy = 2p(x).
For astring vibrating in air with resistance proportional 1o
velocity, the boundary value problem is
Yy = (12)'\._‘ —2hy,:
v, =y(L, 1 =0,
vy, = f(x).
v, 0 =0
Assumethat 0 </t < waf/L. (a) Substitute
Yy ) = X()T(@)
in (41) to obtain the equations
X"+1X=0. X0 =X(L)=0 (42)

and

T+ 2T +*°AT =0, T'0)=0.

(b) Theeigenvalues and eigenfunctions of (42) are

s
n-m-

5

Ay =

and X, (x)=sin e
L

oy

(as usual). Show that the general solution with A =
n2r?/L* of the differential equationin (43)is

T,(1) = e (A, cosw,t + B, sinw,1),

where w, = /(27 2?/L?) — i < nma/L. (¢) Show
that T/(0) = 0 implies that B, = /iA,/cw,, and hence that
to within a constant multiplicative coefficient,

Tn(,) = (’—/”COS (w1 — ay)

where o, = tan™' (J/w, ). (d) Finally. conclude that

0
nax

v(x, 1) = L Zc,, cos (w, t — o) sin 7

n=|
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where The snapshots in Fig. 9.6.4 show successive positions of a vi-
> L . brating string wiilt length L = w and a = | (so its period of
Cii = / fx)sin——dx. oscillation is 2 ). The string is initiallv at rest with fixed end-
L coser, Jo L points, and at time t =0 it is set in motionwitltinitial position
From this formula we see that the air resistance has three Sunction

main effects: exponential damping of amplitudes. de-

creased frequencies w, < nmwa/L, and the introduction f(x) = 2sin’ ¥ = 1 — cos 2x. (44)
of the phase delay angles a,,. ’

22. Rework Problem 21 as follows: First substitute y(x, 1) = 23. The most interesting snapshot is the one in Fig. 9.6.4(e),
e Mu(x,1) in Eq. (41) and then show that the boundary where it appears that the string exhibils a momentary “flat
value problem for v(x, 1) is spot” al the instant7 = x/4. Indeed, apply the d’Alembert

formula in (30) to prove that the string’s position function

k) b
Vg =a v, +hu; i o
! - y(x. 1) satisfies the condition

v(0.1)=v(lL,)=0,
v(x,0)= f(x).

T bid 3
e ) = ; T<y<
v (x.0) = hf(x). ¥ ("' ) =1 for =t=77

4
Next show that 1he substitution v(x. 1) = X(x)T(1) leads

to the equations 24, (a) Show that the position function f(v) defined in

Eq. (44) has inflection points [f"(x) = 0] at x = 7/

X'"+xX=0. XO0O)=X(L)=0. and at ¥ = 37 /4. (b) In snapshots (a)—(c) of Fig. 9.6.4 it

T + (ha® — 1T =0. appeurs that ll.]C.S(? two iqﬁeclion poim.s n}ay .rcmz.lin fixed

during some initial portion of the string’s vibration. In-

Proceed in this manner to derive the solution y(.x, 7) given deed, apply the d’Alembert formula to show that if either
in part (d) of Problem 21. x=mnMorx=3x/4 then y(x,1)=1 for0 £ 1 S /4.

YR-WaXe]dlleleoi( )il Vibrating-String [nvestigations

Here we describe a Mathematica implementation of the d’ Alembert solution
y(x, 1) = 3 [Flx +at)+ F(x —ar)) n

of the vibrating-string problem, and apply it to investigate graphically the motions
that result from a variety of different initial positions ofthe string. Maple and MAT-
LAB versions of this implementation are included in the applications manual that
accompanies this text.

To plot the snapshots shown in Fig. 9.6.4, we began with the initial position
function

f[x_]1 := 2%Sin[x]"2

To define the odd period 277 extension F(x) of f(x),we need the function s(v) that
shifts the point v by an integral multiple of 7 into the interval [O, 5T ].

s[x_.] := Block[{k}, k = Floor[N[x/Pi]];
If[EvenQ[k], (¥ k is even k)
(* then %) N[x - k#Pi],
(* else *) N[x - kxPi - Pi]]]

Then the desired odd extension is defined by

F[x_-] == If[s[x] > 0, (* them *) £f[s[x]],
(* else x)-f[-s[x]]]

Finally, the d" Alembert solution in (1) is

G[x_, t_] = ( F[x + t] + F[x - t] )/2



