
Fourier Series
Methods

Periodic Functions and Trigonometric Series

As motivation for the subject of Fourier series, we consider the differential
equation

(12r
+ — f(i), (I)

which models the behavior of a mass-and-spring system with natural (circular) fre
quency coo, moving under the influence of an external force of magnitude f(i) per
unit mass. As we saw in Section 3.6, a particular solution of Eq. (1) can easily
be found by the method of undetermined coefficients if f(t) is a simple harmonic
function—a sine or cosine function. For instance, the equation

dx
----l-wx=Acosot (2)

with w2 w has the particular solution

A
, cos cot, (3)

which is readily found by beginning with the trial solution x(t) = ii cos ot.

Now suppose, niore generally, that the force function f(r) in Eq. (1) is a

linear coinbinatioii of simple harmonic functions. Then, on the basis of Eq. (3)

and the analogous formula with sine in place of cosine, we can apply the principle
of superposition to construct a particular solution of Eq. (1). For example, consider
the equation

wx = cosw,t, (4)

580



9.1 Periodic Functions ond Trigonometric Series 581

in which w is equal to none of the w. Equation (4) has the particular solution

‘ A,,
= cos coat, (5)

,=1 w —

obtained by adding the solutions given in Eq. (3) coirespondiiig to the A terms on
the right-hand side in Eq. (4).

Mechanical (and electrical) systems often involve periodic forcing functions
that are not (simply) finite linear combinations of sines and cosines. Nevertheless,
as we will soon see, any reasonably nice periodic function f(t) has a representation
as an infinite series of trigonometric terms. This fact opens the way toward solving
Eq. (1) by superposition of trigonometric “building blocks,” with the finite sum in

Eq. (5) replaced with an infinite series.

DEFIMITION Periodic Function

The function f(t) defined for all t is said to be periodic provided that there exists
a positive number p such that

f(t -t- p) = fQ) (6)

for all t. The number p is then called a period of the function .f.

Note that the period of a periodic function is not unique; for example, if p is
a period of f(t), then so are the numbers 2p, 3p, and SO on. Indeed, every positive
number is a period of any constant function.

If there exists a smallest positive number P such that 1(t) is periodic with
period F, then we call P the period of f. For instance, the period of the functions

g(t) = cos 01 and h (1) sinnt (where n is a positive integer) is 2rr/n because

I 2jr’\
COs ii 1 + — I = cos(nt —I- 2r) = cos ni

\ ii)

and (7)

I 2r’\
sinii 1—i—— J sin(izt —I— 2jr) = sin hr.

0 0 0 ‘ a)

•‘ Moreover, 27r itself is a period of the functions g(t) and Ii(t). Ordinarily we will
“ have no need to refer to the smallest period of a frnction f(t) and will simply say

that f(t) has period p if p is any period of f(t).

URE 9.1.1. A square-wave In Section 7.5 we saw several examples of piecewise continuous periodic func
ion. tions. For instance, the square-wave function having the graph shown in Fig. 9.1.1

has period 2r.
Because g(t) = cos ut and Im(t) = sinnt each have period 2jr, any linear

combination of sines and cosines of integral multiples of 1, such as

f (t) 3 + cost — sill I + 5 cos 2t -1— 17 sin 3t,

has period 2r. But every such linear combination is continuous, so the square-wave
function cannot be expressed in such manner. In his celebrated treatise The Aum/i’tic
Theory af Heat (1822), the French scientist Joseph Fourier (1768—1830) made the
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remarkable assertion that every function fit) with period Z,r can be represented by
an iqjinire trigonometric series of the form

Cm

w + Etan cosnf -I--b,, sinni). (8j
a as!

(The reason for writing lao rather than o here will appear shortly—when we see
that a single formula for a,, thereby includes the case ii =0 as well as a> 0.) W
will see in Section 9.2 that under rather mild restrictions on the function 1W. this
is so! An infinite series of the form in (8) is called a Fourier series, and the nipre
sentation of functions by Fourier series is one of the most widely used techniques
in applied mathematics, especially for the solution of partial differential equations
(see Sections 93 through 9.7).

Fourier Series of Period 2x Functions

In this section we will confine our attention to functions of period 2n. We want to
detennine whatthc coefficients in the Fourier series in (8) must be if it is to converge
to a given function f(1) of period 2w. For this purpose we need the following
integrals, in which in and,; deaote positive integers (Problems 27 through 29):

(1 (0 ii,,. ii.
, cosmtcosnidi= 4 . (9)

if in = a.

(7
, lo ifin a,

I sinnu sinai li= 4 (10)
ifin=n.

Fr

cosvnt sinntmli=O fornllinandn. (II)
.1-7

These formulas imply that the functions cosin and sin,,, forn = I, 2,3,... consti
tate anwtummlly onlwgmarcml set of functions on the interval L—,r. rJ. iWo real-valttd
functions nfl) and u(t) are Mid to be orthogonal on the interval Ia, hi provided that

I,

nQ)r(i)th = 0. (12)

(The reason for the word “orthogonal” here is a certain interpretation of functicfl5
as vectors with infinitely many values a- “components,” in which the integml of
the product of two functions plays the same role as the dot product of two ot’dinVY
vectors: recall that u • v = 0 if and only if the two vectors are orthogonal.)

Suppose now that the piecewise continuous function f(’) of period Zr hasfl
Fourier series representation

1(l) = 5+E(amcoSml+b,,sinml),
(13)

in—I

in the sense that the infinite series on the right converges to the value .1(1) for tWO’
t. We assume in addition that. when the infinite series in Eq. (13) is muItiP11

j
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any continuous function. the resulting series can be integrated term by term. Then
the result of terniwise integration of Eq. (13) itself from t = —n to r = it is

f(r) dt
= f

+ (an

fT
cos mt dt) + (,, J sin nit dt)

because all the trigonometric integrals vanish. 1-lence

=
— I f(t)dt. (14)
It J .

If we first multiply each side in Eq. (13) by cos iii and then integrate termwise, the
result is

f.f(t) cos lit di
=

cos lit dt

(an f cosmnt cosnl -+ (, / sinint cosntdt);j=j JT ,n=i
it then follows from Eq. (ii) that.

fT
f(t) cos ,ii di = a,, (J cos flit cos lit (It) . (15)

But Eq. (9) says that—of all the integrals (for in I, 2 ) on the iight-hand
side in (15)—only the one for vhich ni = n is Honzero. It follows that

[ f( cosntdt = j cos2 oh di = na11.

SO the value of the coefficient a is

(ifl =
— f f(t) cosi,! dt. (16)
ir J

Note that .vitli a = 0. the formula in (16) reduces to Eq. (14): this explains why we
denote the constant term in the original Fourier series by -O() (rather than simply

(10). If we multiply each side in Eq. (13) by sin lit and then integrate termwise. we
find in a similar way that

I fT= — f(t)siniztdt (17)
it

(Problem 31). In short, we have found that if the series in (13) converges to f(t)
and f the termwise integrations carried out here are valid, then the coefficients in
the series must have the values given in Eqs. (16) and (17). This motivates us to
define the Fourier series of a periodic function by means of these formulas, whether
or not the resulting series converges to the function (or even converges at all).
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DEFINITION Fourier Series and Fourier Coefficients

Let f(t) be a piecewise continuous function of period 2yr that is defined for all
t. Then the Fourier series of f(t) is the series

cc

- -1- (a,1 cos iii H- b7, sin itt), (18)
‘I = I

where the Fourier coefficients a,, and b,, are defined by means of the formulas

1 ir

=
— I f(t) cos nt dt (16)
r J

for ii = 0, 1, 2, 3, . . and

I P7
b,, =

—

j f(r) sin lit di (17)
r j

for a = 1, 2, 3

You irlay recall that the Taylor series of a Function sometimes fails to converge
everywhere to the function whence it came. It is still more coirunon that the Fourier
series of a given function sometimes fails to converge to its actual values at cei-tain
points in the doinai ii of the function, We will therefore write

f(t) + (ci cos iii + b sin lit), (19)

not using an equals sign between the function and its Fourier series until we have
discussed convergence of Fourier series in Section 9.2.

Suppose that the piecewise continuous function [(1) as given initially is de

fined only on the interval [—it, it], and assume that [(—it) = f(Yr). Then we can

7 / / 7 extend f so that its domain includes all real numbers by means of the periodicitY

( • f • ( • condition f(i — 2) f(t) for all t. We continue to denote this extension of the

original function by r. and note that it automatically has period 27r . Its graph looks
J J the same on every interval of the form

____________

I I I I

—Yr —j r 3j 5r
(_im — 1 )r I (2ii -j- 1 (it

FIGURE 9.1.2. Exiendine a
function to produce a periodic wheren is an integer(Fig. 9.1.2). For instance. the square-wave function of Fig. 91.1

function, can be described as the period 2it Function such that

—1 if—Yr < t < 0;

,f(t)= +1 ifO</ <; (20)

0 ift = —yr, 0, or7r.

Thus the sqLlare-Wave function is the period 2r function defined on one full period

by means of Eq. (20).
We need to consider Fourier series of piecewise continuous functions because

many functions that appear in applications are only piecewise continuous. not c0r1

tinuous. Note that the integrals in Eqs. (16) and (17) exist if f(t) is piecewise

continuous, so every piecewise continuous function has a Fourier series.

j



Example 1

Solution It is alsvavsa good idea to calculate o separately, using Eq. (14). Thus
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Find the Fourier series of the square-wave function defined in Eq. (20).

i rr 1 0

(l = f(i)di =
— I (—I )c/1 -+ — I (+1)li

J()

= —(—rr) ± —(yr) = 0.

We split the (il-st integral into tro integrals because f(i) is detined by different
formulas on the intervals (—7r, 0) and (0, ); the values of f(t) at the endpoints of
these intervals do not affect the val Lies of the integrals.

Equation (16) yields (for n > 0)

=

— f f(i) cos,ii di = J° (—cosnt)dt +
— f cosnt di

I I 1° IF!
= —

—— sinni —I—— I — smut = 0.
r ii J L°

And Eq. (17) yields

1 r 1° I rT
b

— f f(t) sinntdi =
—

(—sin nt)dl—f
— I sinntdt

r j YT J-r T Jo

1 l
° 1 1

=
— I — cos iii + —

—— cos nt
r [a r ii

2 2
= —(I —cosnr) = —[I — ( l)°I.

nyr iijr

lii us a, = 0 for all ii 0. and

for ii odd’
iijr
0 for ii even.

The last result follows because cos(—nrr) = cos(mr ) l)°. With these values
of the Fourier coefficients, we oblain the Fourier series

4 sin ut 4 / 1 1
.

.1(t) — = —
slut + - sin3r + —sin 5t H-•’- . (21)

, dd
—

Here we have introduced the uselul abbreviation

for

odd
ii Odd

—for exaniple,

I? (Cid



586 Chapter 9 Fourier Series Methods

Figure 9. 1.3 shows the graphs of several of the partial sums

N sin(2n — I )t

2ii—1
=1

of the Fourier series in (21). Note that as t approaches a discontinuity of f(t) from
either side, the value of S(t) tends to overshoot the limiting value of f (1)—either
-I-i or —1 in this case. This behavior of a Fourier series near a point of di scontin uity
of its function is typical and is known as Qibs’s phenonienon.

I flJ Li’
With 24 terms

FIGURE 9.1.3. Graphs of partial suns of the Fourier series of the square-wase
function (Example I) with N = 3.6, 12. and 24 terms.

The following integral formulas, easily derived by integration by parts, are
useful in computing Fourier series of poynornial functions:

f u cosu do cos u usinu±C; (22)

fit sin it do sin ii — ii cos o + C; (2

J it5 cost, do 1(11 sin — , f sin u c/u; (24)

sin a do —a” cos ii +i, f 1,e_ i clii. (25)

\Vith 3 terms Vitli 6 terms

\“itlt 12 iet•tfls
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Find the Fourier series of the period 2yr function that is defined in one period to be

0

= I

Jr

The graph of f is shown in Fig. 9.1.4.

if—yr <1 0:

ifO I <yr;

ift =

Solution The values of f (yr) are irrelevant because they have no effect on the values of
the integrals tliat yield the Fourier coefficients. Because f(t) 0 on the interval

0 to t = ir. Equations (14), (16), and (17) therefore give
(—yr, 0), each integral from t —r to i = Jr may be replaced with an integral from

CURE 9.1.4. The periodic
iction of Exaniple 2.

-r r -iir1 i lii i r
=

— I 1c11 = — I —t— I = —

rL2 J 2

a, =

— J’. t cos at dt
= / ii cos ii cia

Jo

/ Ii
(it fit, I = —

ii

I r 110T

= —s—-— cos u—I— nsinuj
n—yr L io

[( 1) 11

(by Eq. (22))

Consequently, u, = 0 if ii is even and ii 2;

ci, = —— if ii is odd.
il-jr

I P•T I 1”
—

t sinnl cit —s——— itSifl it c/u

J li-jr Jo

I mIT

sift! — it C051( I
11-7-i. Jo

(by Eq. (20))

= —— cos ii2r
ii

(_l)11
=

11
for all ii 1.

Therefore, the Fourier series of f(t) is

yr 2 cosnl ( 1)H sin lit
f(t) — — +

0
n odd

Example2

(26)

NeKt,

Thus

(27)

I
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(1) di
= j

for all ci. That is, the intesraI of [(1) oxer one iuter\aI of length 2r is equal to its
integral over any other such interval. In case [(1) is given explicitly on the i nterval
0. 2jr I rather thun on [—jr. r I, it may he niore convenient to compute its Fourier

coeihcients as

(i,
— / (1 )cos flt iii

Iii Piith/eiiis I ilimiig/t /0, •she’Ii i/ic ,tivtpIi () i/ic /in,etuni I
ch’/ined fin all / hi’ the ,g ii’en brim I hi, (I! id (lctem,;mm,lc i/i cuter
it mv /meiiomli(’. if SO. foul it.i .snicm/le.mt jk’iioc/.

1. [0) sin3i 2. /0) =COS 2T1
31

3. j(t)=cos—

5. f(t) = tan! —

7. f’(t) = cash 3t
9. [0) = sin t

In Pmvhiemn,s II i/trait li 26, the ivmliiev of a /Nrwc/ 27r [immi lion

/ (1) i one fit/i perwil ale ,mo’eui . S/cic/i ,seIt’ra/ /mcrim)ch of fe
graih (111(1 fuIi(/ (IS foitiie r series.

[(I) I , — i

±3. —ir<tO:
—3. 0<r

10. —7</SO:
13. f(i) = —

7+1. —jr<rO:
7—1, O’zt7r

+t, -t<0:

0. Otjr

—ur i <—7/2:

—r/2 i 5 .7/2:
7/2 <t 5 7

21. TO) = t2 . —T I 5
22. f(t)=t2 .0 / <27

0. —rmSO:
23. [(t)= — —

i. Oi<r
24. fib) = sin/[. —Jr i 71

25. TO) Co< 2t —Yr I ST

0. —jri0:
26. /0= . - —

sm! 0i5ir
27. \‘eri lv Er1. OL S’im,cviiaii: t’se the Lrieonoiiietric idei]

lily

Ct)S; 705 13 ! cos( A
- B) -I- ens) A — 13)1 .)

211. Verify Eq. (10).
29. Verif Eq. (I
30. Let f(i) be a JICCCWiSC CflhltiIlLIOUS tunctioii with penod

P. (a) Suppose thit 0 5 ci P. Suhtinjte u = I — P tO

show that

C’onclricle that

I.iI, j(IA/i f U) sit.
I’ . I)

lit) (11
=

f (I)dr.

(b) 0 ecu A. choose ii so that A = imp — , ith

0 cm < P. Then substitute v = i — it P to show that

[.14

f(/ ) (it /
‘

[(1) cli / fIt) di.

31. Multiply erich side in Eq. 113) by sinfu/ and then ntegra

term by term to derive Eq. (17).

If /‘(t ) is a function of period 27, it is readily verified (Problem 30) that

.1(1 (di (28)

and

Problems

Ii, = — f(t ) sin itt cii

(29a)

(291j)

3.

6. f(1)=eot2iri

8. fIt) = simh.ri
10. [(1) = cos2 3i

11.

12. /‘(i) =

14.

15.
16.
17.

[0) =

f(r) =

[(1) =

f(t) =

1. O<Ir

3. —r <ISO:

L—2 0<t7
1. — <1

t. (1 < t < 2r
111.—Yr I

1$. f(t) =

19. [(1) =

20. f0 =

0.

I.

0.
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General Fourier Series atid Convergence

In Section 9.1 we defined the Fourier series of a periodic function of period 23r.
Now let [(1) be a function thai is piecewise continuous for all t and has arbitrary
period P > 0. We write

P=2L, (1)

so L is the half-period of the function f. Let us define the function g as follow’s:

LuN
(2)

for all u. Then

(Lii /Lu
—+2Lj = .1 l I =

) \TJ

and hence (u) is also periodic arid has period 2n. Consequently, g has the Fourier
series

(n) + Z(° cos nii + b,, sinnu) (3)
n=I

vith F0LI tier coefficients

ri,
— I g (ii) cos iiit do (4a)
yr j,

L1l1d

b, =
— I (‘‘ ) sin iii, dii. (4h)
yr J

Ii we nov, write

Lu r1 -

i —, u
—,

f(i) = g(u), ()
L

then

[(i) = g () + (ancos i- (6)

and then substitution of (5) in (4) yields

/ -t
=

— J g(u) cos flu do 1\u = —, do = — Jr
L L

I f’ (7r1\ urn
— I l — Icos—dt.
LJ_L \L/ L
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Therefore,

I flirt

= LJ
c1t; (7)

sindlarly,

L

b.
L IL dt. (8)

This computation motivates the following definition of the Fourier series of a peri
odic function of period 2L.

DEFIMI11ON Fourier Series arid Fourier Coefficients

Let f(t) be a piecewise continuous function of period 2L that is defined for all
t. Then the Fourier series of r (t) is the series

DO
n7rt nirt\

f(t) -— -I— > (cii cos + b,7 sin —) , (6)

where the Fouricr coefficients {a,1}° and {b,} are defined to be

1 L nnt1 (7)

and

LIL ()

With n 0, Eq. (7) takes the simple form

ao = / f(t) dt, (9)

which demonstrates that the constant term in the Fourier series of f is simply
the average value of f(t) on the interval [— L, L].

As a consequence of Problem 30 of Section 9.1, we may evaluate the integrals

in (7) and (8) over any other interval of length 2L. For instance, if f(i) is given by a

single formula for 0 < I < 2L, it may be more convenient to compute the integrals

1
21,

n7rt
(i T J f(t)cos —

(ba)

and

2L
lint b)

f(t)sin—dt.
(10
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Example 1 Figure 9.2.1 shows the graph of a square-wave function with period 4. Find its
Fourier series.

Solution Here, L = 2; also, f(t) —l if —2 <1 < 0, while j(t) = I if 0< t < 2. Hence
Eqs. (7), (8), and (9) yield

RE 9.2.1. The
-wave of Example 1. and

j 2 ° 2

= f f (1) ut = 1-2 (— I) di / (+ I) dt =

1 mrt 1 2
nrt

12 (—1) cos —s--- cit -I- J (+ I) cos —i-- di

I F 2 nyril° 1 F 2 ,urtl2
=—l ——sin—— I -f-—I —sin-——- I =0

2L nrr 2 J.-2 2[nrr 2

nTrtI . iuri I
=

- (—1) sin cit + I (+1) sin cit
J0 22 —2 2 2

2I E 2 ,irt1° I [ 2 n7rtl
cos — I-1- —

— cos + -

2 J02 njr 2 .J—2 2 nr

4

= —-—[l —(—I)]
=

hiT
0

Thus the Fourier seies is

4 I fin
f(t) — — — sin—

2
II Odd

if ii is odd,

if n is even.

47 ri I 3rt I . 5int

The Coirvergeiice ‘Theorem

(1 Ia)

(I Ib)

S

We want to impose conditions on the periodic function f that are enough to guar
antee that its Fourier series actually converges to f(t) at least at those values oft at
which f is continuous. Recall that the function f is said to be piecewise continuous
on the interval [, ii] provided that there is a finite partition of [o, bj with endpoints

such that

a=t11<t1<t2<•<t,1<t,=b

1. f is continuous on each open interval ti_i < I < t; and

2. At each endpoint i of such a subinterval the limit of f(t), as t approaches tj

from within the subinterval, exists and is finite.
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The function [ is called piec’en’ire ‘oiltinuous for all t if it is piecewise coil
tinuous on every bounded interval. It follows that a piecewise continuous function
is continuous except possibly at isolated points, and that at each such point of dis
continuity. the one—sided limits

.1(1+) lim 1(n) and f’(r —) = liin J(u) (12)
lf—T —

both exist and ni-c tin ile. Thus a piecewise continuous function has only isolated
Inite jump” discontinuities like the one shown in Fig. 9.2.2.

The square—wave and sawtooth functions that we saw in Chapter 7 are typical
examples of periodic piecewise continuous functions. The function f(t ) taut
is a periodic unction (of period r ) that is not piecewise continuous because it has
infinite discontinuities. ‘The luriction g (t) = sin( I/i) is not piecewise continuous
on [—I 1] because its one—sided limits at t = () do not exist. The function

t if t = (n an integer),
ii

0 otherwise

on [—1, 1] has one-sided limits everywhere, but is not piecewise conti nuotis because
its discontinuities are not isolated—it has the infinite sequence ( l/n} of disconti
nuities; a piecewise continuous function can have unIv finitely n-ianv discontinuities
in any hounded interval.

Note that a piecewise continuous function need not be delined at its isolated
points of discontinuity. Alternatively, it can be defined arbitrarily at such points.
For instance, the square wave function f of Fig. 9.2.1 is piecewise continuOLlS no
matter what its values might be at the points —4. —2.0. 2.4. 6. . . . at vhich it
is discontinuous. Its derivative f is also piecewise continuous: f’(r ) = (I unlesS I

is an even inteer. in which case (‘‘(I) is undefined.

The piecewise continuous function 1 is said to be piecewise smooth provided
that its derivative [ is piecewise continuoLls. Theorem 1 (next) tells ILS that the

Fourier series of a piecewise smooth function converges everywhere. More general
Fourier convergence theorems—with weaker hypotheses on the periodic function
f—are known. But the hypothesis that f is piecewise smooth is easy to check and

is satisfied by most functions encountered in practical applications. A proof of the

following theorem may be found in G. P. Thlstov, Fonrier Series (New York: Dover,

1976),

THEOREM 1 Convergence of Fourier Series

Suppose that the periodic function f is piecewise smooth. Then its Fourier series

in (6) converges

(a) to the value f(t) at each point where f is continuous, and

(b) to the value [.f (t—I-) + f(t—)] at each point where f is discontinuous.

Note that I.f(r -i-) - f(t —) j is the av’el-clge of tIe right-hand and leftiland

limits of / at the point I. If 1’ is continuous at t .then f(t) f(r+) f(t—), SO

FIGURE 9.2.2. A Ii nite jump
discontinuity.

[(t)
= [(1+-) -f (13)



Example 1

Continued

Example 2
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Hence Theorem I could be rephrased as follows: The Fourier series of a piecewise
smooth tunction f converges for even t to the avel-age value in (13). For this reason
it is customary to write

(10
‘ / izYrt

.1(t) -- + c,, cos — + b, sin —,) , (14)

with the understanding that the piecewise smooth function f has been rcdeli ned (if
necessary) at each of its points of discontinuity in order to satisfy the average value
condition in (13).

Figure 9.2. 1 shows us at a glance that if t is an even integer, then

lim j’(t) ± I and Jim f(t) = —l
—

Hence
f(t0-j-) -F f(o—) —

Note that. in accord with Theorem 1. the Fourier series of f(t ) in (II) clearly con
verges to zero if n is an even integer (because sin nr = 0). I

Let f (t) be a function of period 2 with f(i) = r2 if 0 < r < 2. We defoe .1 (1)

for t an even integer by the average value condition in (13): consequently. [(1) = 2
if t is an even integer. ‘The graph of the function I appears in Fig. 9.2.3. Find its
Fourier series.

El i 8
— I ttlt= I —P I = —.

1J0 [3 ]

lrith the aid of the integral formulas in Eqs. (22) through (25) of Section 9.1 we
obtain

f t2cos ,it cli

1 (2T

=

—-—— J ir COS iu ( = oirt * t =
ii yr 0 iiyr

I r i2n 4
— 2sinu + 211 cos uj

if- 0 11-7r

I . ‘ I 213 I t Slit hint cit = u sin ii do
Jo ii- yr

I r ]2n7r 4
-I----iicosu +2cosu -4--2usinul
n3yr3L Jo nyr

Solution Here L = I, and it is most convenient to integrate from t = 010 1 = 2. ‘Then

—4 —2 1 2 4 05 0 It) ‘

:GURE 9.2.3. The period 2
notion of Example 2.
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Hence the Fourier series of f is

4 1 cosn’rr 4 sinmrt

——

. (15)
3 YT— ii,i=l

and T’heorein I assures us that this series converges to f(t) for all t.

We can draw some interesting consequences from the Fourier series in (15).
If we substitute t = 0 on each side, we Ii nil that

4 4l
f(O)=2=—+---

3 Tr- _ln

On solving for the series, we obtain the lovely suinniation

(16)

that was discovered by ELder. If we substitute I = tin Eq. (15). we get

4 4 (—1)’

which yields

1(1+1 I I 1 2

iz
=1—+—H---=-. (17)

If we add the sed es in Eqs. (16) and (17) and then divide by 2, the “even terms
cancel arid the result is

I I I 7T
(18)

I) (kid

Problems

In Pivbleins / thivuh /4, the ia/ues of a periodic lunilion 5. f(t) = 1. —2r < I <

f(t) in one full period are gil’eiI: at each thscn,iuuuin’ the 6 f(t = t (1 < 1 < 3
‘aloe of .1(1) is i/ia! giu’en by the ‘eraee u’ohte aithijo,i iii . -

(13). Sketch the graph off and find itc Fourier series. 7. f(it = 11’, 1 <I < I

0. 0 <t<l;—2 —3 < 1 < 0:
1. f(t)

= 2. 0 < t 3 8. [(1) = I. I <I <2;
0. 2.ci<3

0, —5<r<0;
2. f(t) = 9. [(1) = ,-, — I <r < I

1. 0<t<5
0. —2-<t<0;

2. —2w < I < 0: 10. [(t)
3. !(t)= t—, 0<1<2

—1, 0<t<27r
7rt

4. f(t) = r. —2<1 <2 11. J(i) COS -i—, —l <1 < I
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where G (I) denotes the kth iterated antiderivative

G (1) (D )ky(t). This formula is useftil in cornput
ing Fourier coefficients of polynomials.

23. Apply the integral formula of Problem 22 to show that

fI4costr/I=t4sinI

— l2tsint — 241 cos t±24sint -f-C

J4 Sin 11l COst + 43 sin i

12t cost — 24rsint — 24 cost + C.

24. (a) Show that forD < t < 2cr.

16cr1 2cr 3 ‘

fl=—--—-b l6(____jJcosnr

-I- 16cr (- — sin ni

and sketch the graph off, indicating the value at each dis
continuity. (h) Froni the Fourier series in part (a), deduce
the so nimat ions

i 4 i5I ‘7 4: cr -, - cr— 90’ — 720
I I

\-l

96’

25. (a) Find the Fourier series of the period 2cc lunction f
with [(1) =f3 if—cc < t < cr. (h) Use the seriesofpart
(a) to derive the sumin ati on

1 i i

and sketch the graph of f’, indicating the xalue at each
discontinuity. (C) Attempt to evaluate the series

+±+±•..

by substitutina an appropriate value of I in the Fourier
series of part (a). Is your attempt successful’? Explain.
1?eniur: If you succeed in expressing the sum of this
inverse-cube series in terms of familiar numbers—for in
stance. as a rational multiple ofcr1 similar to Euler’s sum
in part (a)—you will win great fame for yourself, for many
have tried without success o’%er the last two centuries since
Euler. Indeed, it was not until 1979 that the sum of the
inverse-cube series was proved to he an irrational number
(as long suspected).

and that

[(1) = sin cr/, 0 < t < I

0. —l <1<0:

since!, () < /< I

0, —2cr <1<0:

sint. 0<t < 2

a) Suppose that [is a ftinction of period 2cr with j’ (t
2 forD < I < 2cr. Show that

cosu! sill!,!
‘)=

and sketch the graph of f’. indicating the value at each LliS—

continuity. (b) Deduce the series sunmiat ions in Eqs. (16)
and (17) from the Fourier series in part (a).

(a) Suppose that f is a function of period 2 such that

f (i) 0 if —1 < r < 1) and f(t ) = i if I) < t < 1
Show that

1 2 cos nc-ri I ( — 1)11 sin ncr I
+—

4
n idd fl: I

and sketch the graph ol r. indicating the value at each dis—
continuity. (h) Deduce the series summation in Eq. (18)
from the Fourier series in part (a).

(a) Suppose that [is a function of period 2 with /(t) =

forD < t < 2. Show that

‘C -— sillier!
1(1) I — —

________

and sketch the graph of 1’ indicating the alue at each
discontinuity. (b) Subs/i lute an appropriate value oft to
deduce Lcihniz’s series

I I I cr
1 3±5 7+

4’

ic the 1-i,,ieer series listed in P,ohlr’,nv l& iii iso igli 21, urn!

Ii the period 2cr [!II1(’Ii(fl? 10 ii’ITh’/! i’ichi •VCiiC (o!1ITIt(-’s.

“C sin ft IT — I
= —--— (0 <1 <2cr)

‘ (— I) stool I

11
(—cr-<t<cr)

coso! 32 — fart f 2cr2
(0<t<2rr)

12

,i+l -)
(— I) cos ni ir— — 3t

I1 = 12
(—cr<t<cr)

Suppose that p ) is a polyiioiiiial of degree ii. Show by
repeated integration by parts that

J p(t)g(t) It p(I)G1 (I)— p’(1)G2(t)

and

+ p (i)G7(t) — ... ±(—l )flp>(t)G,,+1(1)
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9.2 Application Computer Algebra Calculation of Fourier Coefficients

A computer algebra system can greatly ease the burden of calculation of the Fourier
coefficients ofa given function f(t). hi the case of a function that is defined “piece
wise.” we must take care to ‘split’ the integral according to the different intera1s
of definition of the function. We illustrate the method by deriving the Fourier series
of the period 2jr square-wave function defined on (—yr. r) by

f—I
if —7r<t-<O.

f(t) =

-+1 if O<t<7r.
ii)

In this case the function is defined by different formulas on two different intervals,
so each Fourier coefficient integral from —r to r roust he calculated as the sum of
two integrals:

i”0 1
a,, =

— / (—1) cosniclt
— J (+1 )cosn/ di,
Jr

= L / (—1) sin iii cli J (+1)

We can define the coefficients in (2) as functions of ii by the Mciple commands

a n —> (1/Pi)*(int(—cos(n*t), t=—Pi. .0) +

irLt(-fcos(n*t), t0..Pi)):

b ri —> (1/Pi)*(int(—sin(n*t), t=—Pi. .0) +

irkt(+sin(n*t), t=O..Pi)):

or by the Maihemcnica commands

a[nl (1/Pi)*(Integrate[—Cos[n*t], {t, _Pj, 0).] +

IategIJate[+Cos[n*t], {t, 0, P1)-])

b[n_] (1/Pi)*(Integrate[—Sin[n*t], {t, —Pi, 0}] +

Integrate[+Sin[n*t, {t, 0, P1).])

(2)

Because the function f(t) in Eq. (1) is odd, we naturally find that o. Hence
the Maple commands

fourierSuni : sum(b(n)*sir(ii*t), ril. .9);

plot(fourierSum, t=-2*Pi.. 4*Pi);

or the iWat/,e,nc,Iica commands

fourierSuin = Sum[bIn]*Sin[n>t], {n,I,9)-]

Plot[fourierSum, {t, -2*Pi, 4*Pi}J;

yield the partial sum

4 1’ sin 3t sin 51 sin 7t sin 9i
bsinni = — sint-1- -- —H-—--—--

ii=1

and generate a graph like one of those in Fig. 9.1.3. The corresponding MATLAB

commands are entirely analogous and can be found in the applications manual that
accompanies this text.
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To practice the symbolic derivation of Fourier series in this manner, you can
begin by verifying the Fourier series calculated manually in Examples I and 2 of
this section. Then Problems 1 through 21 are fair game. Finally, the period 2ir
triangular wave and trapezoidal wave functions illustrated in Figs. 9.2.4 and 9.2.5
have especially interesting Fourier series that we invite you to discover for yourself.

y y

I t

FIGURE 9.2.4. The triangular wave.

Fourier Sine and Cosine Series

Certain properties of functions are reflected prominently in their Fourier series. The
function f defined for all t is said to be even if

f(—t) = fQ) (1)

for all t f is acid if

f(—r) = —f(t) (2)

for all t. The first condition implies that the graph of y = f(t) is symmetric with
respect to the y—axis, whereas the condition in (2) implies that the graph of an odd
function is symmetric with respect to the origin (see Fig. 9.3.1). The functions
f(t) = thz (with a an integer) and g(t) cost are even functions, whereas the
functions f(t) = j21 and g(t) = sin I are odd. We will see that the Fourier series
of an even periodic function has only cosine terms and that the Fourier series of an
odd periodic function has only sine terms.

,f<I,)

Od

(b)

=lt- I

It

It—I

FIGURE 9.2.5. The trapezoidal wave.

Even

(a)

FIGURE 9.3.1. (a) An even function; (b) an odd function.
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/ Evcn / (5ki

(a) Ib)

FIGURE 9.3.2. Area under the graph of (a) an even function and (h) an odd.

Addition and cancellation of areas as indicated in Fig. 9.3.2 reminds us of
the lollowing basic acts about integi-als of even and odd functions over an i nte,val
[—0, al that is symmetric around the origin.

pa

If [is even: / f(t )dl = 2] [0) (II. (3)
J_(l

pa

11.1 is odd: j f(t)di = 0. (4)
—(1

ilese facts ue easy to verify imalyticall y (Pi-obleni 17).
It follows iniinediately from Eqs. (1) and (2) that the product of two even func

tions is even, as is the product of tsvo odd functions the product of an even fLinction
and an odd function is odd. In particular. if f(t) is an enen periodic function of pe
riod 2L, then f(t)cos(n-nt/L) is even, whereas [(t) sin9z7rI/L) is odd, because the
cosine function is even and the sine function is odd. When ve compute the Fourier
coeftici cots of /,‘ we therefore get

I mini 2 ci.
lIT! -

u = — I fit) cos di =
—

[(1) cos di (Do)
LJ1 L L L

and

= / sin — Q (5b)

because of(3) and (4). Hence the Fourier series of the even function [of period 2L

has only cosine tenns:

00 !iTt 6)((I) =
-— + a,, cos

— (.1 even)
— ,i1

with the values of a,7 given by Eq. (5a). If f(t) is odd, then f(t) cos(ni/L) is 0dd,

whereas f(t ) sin(,cr i/L) is even, so

I r’- iirt (7a)
— i [(1) COS (It = 0
Lj_L’ L
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and
L nrt 2 L

n7rl
b,

= T I f(r)sin cit / f(t)sin ——-di. (7h)

Hence the Fourier series of the odd function f of period 2L has onlv vine terms:

- ic-ct
f(i) = Zb,, sin (f odd) (8)

with the coefficients b, given in Eq. (7b).

Even and Odd Extensions

In all our earlier discussion and examples, we began with a periodic function de
fined for ciii i; the Fourier series of such a function is uniquely determined by the
Fourier coefficient formulas. In many practical situations, however, ‘we begin with
a function /‘ defined only on an interval of the form 0 < i < L, and we vant to
represent its values on this interval by a Fourier series of period 2 L. The first step
is the necessary extension of f to the interval —L < t < 0. Granted this, we may
extend f to the entire real line by the periodicity condition f(i —I- 2L) = f(i) (and
use tile average value property should ally discontinuities arise). But /moir we define

f for —L < t < 0 is our choice, and the Fourier series representation for f(i)
on (0. L) that ‘we obtain will depend on that choice. Specifically. diflerent choices
of the extension of f to the interval (— L, 0) will yield different Fourier series that
converge to the same function 1(t) in the original interval 0 < r < L. but converge
to the different extensions of / on the interval —L < t < 0.

— In practice, given f(i) defined for 0 < i < L, we generally make one of two
natural choices—we extend .1. in such a way as to obtain either an ecemz fitncmon or
an odd function on the whole real line. The even period 21. extension of f is the
function fc defined as

= f(t) ii 0 < i < L,

• f(—t) if—L <t <0

and by !E(t -I— 2L) = •fc(i) for all 1. The odd period 2L extension of f is [lie
function f0 delined as

f(t) if 0<t L,
(10)

—f(—t) if —L <1 <0

arid by f(t +- 2L) = f0(t) for all t. ‘The values of f or f0 for t an integral
multiple of L can be defined in any convenient way we wish. becaLise these isolated
values cannot affect [lie Fourier series of the extensions we gel. As suggested by
Fig. 9.3.1, it frequently suffices simply to visualize the graph of / on (—L. 0) as
the reflection in the velncal axis of the original graph of f on (0. L), and the graph
of fo on (— L, 0) as the reflection in the origin of the original graph.

For instance, if f(t) = 2t t on the interval 0 < I < 2 (so L = 2). then (9)
and (10) yield

fE(t) 2(—i) — (—t)2 = —2t

and

f0(r) — [2(_t) —
(_i)2]

= 2t
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for the values of these two extensions on the interval —2 < t < 0. The graphs of
the corresponding two periodic extensions of f are shown in Fig. 9.3.3.

The Fourier series of the even extension f of the function ,f.given by Eqs. (5)
—5 —6 —4 —2_i 2 4 6 5 and (6). will contain univ cosine terms and is called the Fourier cocine serie.v of the

original function f The Fourier series of the odd extension f, given by Eqs. (7)
(a) and (8), will contain only sine terms and is called the Fourier sifle ceuie.c of f.

______________________

DEFINITION Fourier Cosine cind Sine Series

Suppose that the function r(t) is piecewise continuous on the interval [0. U.
Then the Fourier cosine series of f is the series(6)

FIGIJRE 9.3.3. (a) The period 4 an 1trt
cos (II)even extension of fU) = 2t ,2 f(t)

LforD < I < 2. (b) Graph of the —

period 4 odd extension of
f(t) = 2t — , forD < t <2. with

2 L n-rt
a,, = J f(t)cos dt. (12)

L

The Fourier sine series of r is the series

fl7Tt
f(r) = i,,,sin — (13)

L
u=1

with

2 jL
. iirit

sin —itt. (14)b,
= -z J f(t)

L

Assuming that f is piecewise smooth and satisfies the average value condition
[(1) = [f(t—l-) -1— f(t—)] at each of its isolated discontinuities, Theorem I of

Section 9.2 implies that each of the two series in (I 1) and (13) converges to •/‘(t)

for all t in the interval 0 < t < L. Outside this interval, the cosine series in (11)

converges to the even period 2L extension of 1. whereas the sine series iii (13)

converges to the odd period 2L extension of 1. In many cases of interest we have

no concern with the values of .f outside the original interval (0, L), and therefore
the choice between (11) and (12) or (13) and ((4) is determined by whether we

prefer to represent f(t) in the interval (0, L ) by a cosine series or a sine series. (See

Example 2 for a situation that dictates our choice between a Fourier cosine series

and a Fourier sine series to represent a given function.)

Example 1

Solution Equation (12) gives

Suppose that f(t) = t for 0 < t < L. Find both the Fourier cosine series and the

Fourier sine series for f

2 1’ 2 1 1L

00=— tdi = — —t1 =L
U L 2 j0
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and

2 CL 2L c
a, = — I t cos—dt = I itcostidu

L j L n2jr2 Jo

4L
2L r -mr for ii odd;

= I u sin ii
——

cos ii I =

n-rr— L Jo
0 torn even.

Thus the Fourier cosi tie series of / is

(15)

forD
<1 < L. Next. Ecj. (14) gives

/ 2 1L nt 2L C”7
I \/ p \.,—‘ b,, — I i sin — di = I ii sin u di,

-2L -L L 21. 1. 4L L J L ,ir2 j1

r njr

CURE 9.3.4. The even period =
———- [—ii cos u + sin a] = —(—1 )1•

extension ul f. YT (I mr

Thus the Fourier siiiei::

+
_..

(16)

for U < i < L. The series in Ec1. (15) converges to the even period 2L extension

CURE 9.3.5. The odd period of /, shown in Fig. ‘-J3.4; the series in Eq. (16) converges to the odd period 2L
extension of 1. extension shown in Fig. 9.3.5. U

Tertnwise Differentiation of Fourier Series

In this and in subsequent sections. we want to consider Fourier series as possible

solutions of clitYereritial equations. In order to substitute a Fourier series for the

unknown dependent variable in a differential equation to check whether it is a so—

lution, we first need to differentiate the series in order to compute the derivatives

that appear in the equation. Care is required here; term-by—term differentiation of

an i ntlnite series of variable terms is not always valid. Theorem I gives sufficient

conditions for the validity of terinovise di t’fercntiation oF a Fourier series.

THEOREM 1 Terrnwise Differentiation of Fourier Series

Suppose that the function j is continuous for all t, periodic with period 2L, and

that its derivative f’ is piecewise smooth for all t. Then the Fourier series of .f’
is the series

‘ / mr nirt mr iurt’\
f’(t)

=
sin—-- -1- —--b,, cos —L--)

(17)
= 1

obtained hy termnwise differentiation of the Fourier series

00 iz7rt flYTt
f(t)

=

(ancos —-l-b,,sin (18)
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Proof: The point of the theorem is that the differentiated series in Eq. (17)
actually converges to .f’(i) (with the usual proviso about average values). But be
cause f’is periodic and piecewise smooth, we know from Theorem I of Section 9.2
that the Fourier series of f’ converges to f’(t):

iiitI iiiit
[‘(1) =

-- +

in order to prove Theorem 1, it therefore suffices to show that the series in Eqs. (17)
and (19) are identical. We will do so under the additional hypothesis that f’is
continuous everywhere. ‘Then

= T f(t) 1i =
[f(t)]L

=

because f(L) = f(—L) by periodicity, and

1 1’ jut-I
cx = — I f’(t) cos — cli

LJ1 L

I r fl2Tt
L j L

=
— L f(!)cos—

-L L T L f(i) sin—c/i

—integration by parts. It follows that

iiir

=

Similarly, we find that
1171

=

and therefore the series in Eqs. (17) and (19) are, indeed, identical.

Whereas the assumption that the derivative f’ is continuous is merely a con
venience—the proof of Theorem I can be strengthened to allow isolated di scontiflU
ities in f’—it is important to note that the conclusion of]’heoreni 1 generally fails
when f itself is discontinuous. For example, consider the Fourier series

2L(. it-I 1 2nt 1 3rt N
I sin— —sin—- + - sin— — I (16)

jr\ L 2 L 3 L )

—L < t < L, of the discontinuous sawtooth function having the graph shoWuW
Fig. 9.3.5. All the hypotheses of Theorem I are satisfied apart from the continUitY
off’ and f has only isolated jump discontinuities. But the series

/ ‘rt 2ni 3rt
2 (cos — — cos — -I- cos — — I (2

\ L L L )

obtained by differentiating the series in Eq. (1 6) term by term diverges (for instance,

when I = 0 and when I = L), and therefore terinwise differentiation of the series

in Eq. (16) is not valid.
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By contrast, consider the (continuous) triangular wave function f(t) having

the graph shown in Fig. 9.3.4. with f(t) = ti For —L < t < L. This function

satisfies all the hypotheses of Theorem 1, so its Fourier series

L 4L in 1 3irt I 5irt
(15)

can be differentiated termwise. The result is

4 / mt I 3mrt I 5rrt
f(t)=—sin-—+sin—-{-—sin—-l-’..). (21)

vhich is the Fourier series of the period 2L square wave function that takes the

value —l for —L < 1 <0 and -I-I forD < t < L.

Fourier Series Solutions of Differential Equations

In the remainder of this chapter and in Chapter 10, we will frequeHtly need to solve

endpoint value problems of the general form

ax” -I- br’ -f- cx = f(t) (0 < r < L): (22)

x(0) = .x(L) = 0, (23)

where the function f(t) is given. Of course, we might consider applying the tech

niques of Chapter 3, solving the problem by

1. First finding the general solution x, = ctr + c2x2 of the associated homoge

neous differential equation;

2. Then finding a single particular solution .x, of the nonhomogeneous equation

in (22): and

3. Finally, determining the constants c1 and C2 so that .u x, —1- x0 satisfies the

endpoint conditions in (23).

In many problems, however, the following Fourier series method is more con

venient and more useful. We first extend the definition of the function f(i) to the

interval —L < t < 0 in an appropriate way, and then to the entire real line by the

peiodicity conditions f(t —l-2L) f(t). Then the function 1’ if piece\vise smooth.

has a Fourier series

A0 I flirt nmrt\
.1(t) = -- —I- LA,, cos — B,, sin —a-) (24)

which has coefficients {A,, } and {B,,} that we can arid do compute. We then assume

that the differential ecluation in (22) has a solution x(t) with a Fourier series

__

00 niti . mrr\
x(t) — -- ± (a11 cos —i- + b sin

—i-—)
(25)

that may validly be differentiated twice termwise. We attempt to determine the

coefficients in Eq. (25) by first substituting the series in Eqs. (24) arid (25) into the

differential equation in (22) and then equating coefficients of like terms—much as

in the ordinary method of undetermined coefficients (Section 3.5), except that now

we have intinitely many coefficients to determine. If this procedure is carried out in
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such a way that the resulting series in Eq. (25) also satis6es the endpoint conditions
in (23). then we have a forma1 Fourier series solution’ of the original endpoint
value problem: that is. a solution subject to verification of the assumed termwise
differentiability. Example 2 illustrates this process.

Example 2 Find a formal Fourier series solution of the endpoint value problem

.v”+4x =41,

.v (0) = .v (1) = 0.

(26)

(27)

sin — —

o ‘•‘- i I
I) 5I

-It = — sin nit:!
it: — ii

sin2i
—

sin 2

Solution Here f(t) = 4r for 0 < i < I. A crucial first step—which we did not make explicit
in the preceding outline—is to choose a periodic extension f(t) so that each term
in its Fourier series satisfies the endpoint conditions in (27). For this purpose we
choose the odd period 2 extension. because each term of the form sin mn satises
(27). Then from the series in Eq. (16) with L = I . we et the Fourier series

(28)

for () < I < 1. We therefore anticipate a sine series sol utiorl

x(1) = b sin na!, (29)

noting that any such series svill satisfy the endpoint conditions in (27). When we
substitute the series in (28) and (29) in Eq. (26). the result is

(_Iz22 4)b sin =
8 (

sin nt. (30)
11= t 11= I

We next equate coeflicients of like ternis in Eq. (30). This yields

8
1’Ii= -) )icr (4. —

so our formal Fourier series solution is

nFl8 (—I) smiur!
i(t) = — —

. (31)
Ii

In Problem 16 we ask you to derive the exact solution

(0tl). (32)

and to verify that (31) is the Fourier series of the odd period 2 eictension of this

solution.
The dashed curve in Fig. 9.3.6 was plotted by summing 10 terms of the Foufl

series in (31). The solid curve for 0 t 2 is the graph of the exact solutTOfl

f \ / ‘
—1 ‘ I

I I ‘
-I ‘ I ‘
1 I
I I

0

((.4

(J.2

0...

—0.2

—0.4

— t.o 0.0 1.0 2.0

FIGURE 9.3.6. Graph of the
solution in Example 2.

(32).
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Teririwise Integration of Fourier Series

Theorem 2 guarantees that the Fourier series of a piecewise continuous periodic

function can always be integrated term by term, whether or not it converges! A

proof is outlined in Problem 25.

THEOREM 2 Terrnwise Integration of Fourier Series

Suppose that f is a piecewise continuous periodic function with period 2L and

Fourier series

f(t) (an cos -j- b, sin
nt) (33)

which may not con’erge. Then

f f(s) th -I- --
[an sin — b,, (cos — (34)

with the series on the right-hand side convergent for all t. Note that the series

in Eq. (34) is the result of term-by—term integration of the series in (33), but if

a0 0 it is not a Fourier series because of its linear initial term -ct1t.

Let us attempt to verify the conclusion of Theorem 2 in the case that fO) is the

period 2j function such that

1—i, <i<0:
(35)

O<tr.

By Example I of Section 9.1, the Fourier series off is

1-1 I 1
f(t) = —( sin,’ -j- —siri3t-1---—siu5i—)--• . (36)

3 /

Theorem 2 then implies that

F(t) = r .f(.c)ds
Jo

r’4/ I I

= I — ksi5+__si35 —I- -sin5x-l— ..) (is
()YT 3 D

= ±[(1 — cost)+(1 —cos3t)+ (l — cos5l) +

Thus

F(t) = +
rS\ 3- —

41 1 1—
— cost + cos3t + cos5i +...). (37)
7r 3-



Problems

—1, — < t <0.
F(t) = I f (s)ds = t =

Jo 1, 0<t<n.

We know from Example I in this section (with L = jr) that

(38)

We also know from Eq. (18) of Section 9.2 that

i i

so it follows that the two series in Eqs. (37) and (38) are indeed identical. I

Iii Pro/jenis I throuç’h 10, a filIulioll f(t) lie/lied au au hurl
uaI 0 < t < L is given. Find the Foit ron eorine (Old sine relies

(Lt and skew/i the graphs oft/in tutu extenvioi,s o/ I to u’h,di

there Ti so .s eries call ic roe.

1. [(l)=t.0<t<7r
2. f(t) = 1—1,0<1 < I

3. 1(1) = I —t,0 < t <2

4. f(i)
=

o < t 1:
1t <2

0. 0<1<1:

5. f(t) = 1, 1 < t < 2:
0, 2<t<3

6. f(t) = 12, 0 < t < r
7. f(t)=t(r—t).0<T<r

. f(r) 1 _t2.0 < I < I
9. f(r) sin 1.0 < t < r

sint. 0<t JT
10. fU) = —

0. 2rt<2r

Find fasinal Fourier series so/ution,r of i/ic’ encipouuit scu/rie
problems in Problems 11 through 14.

Ii. x”+2x = 1,x(O) =r(r) =0
12. .v’t—4.v=1,x(0)=xUr)=D
13. x”+x=r.x(O)=x(l)=O
14. x”+2x=t.x(O)=x(2)=0
15. Find a formal Fourier series solution of the endpoint vulLie

problem

x”+2x=!, x’(O)=x’(r)=O.

(Suggestion: Use a Fourier cosine series in which each
term satisties the endpoint conditions.)

16. (a) Derive the solution x(t) = t — (sin 2t)/ (sin 2)ut the

endpoint value probleni

.v”±4v =4t. xt0) =x(1) = 0.

h( Show that the series in Eq. (31 ) is [he Fourier sine

series of the sal uti on in part (a).

17. (a) Suppose that J is an even function. Show that

f 1(t) dt / f(t) cli.

(b) SLI ppose that f is an odd hi nctio n. Shosv that

[(‘1 dt =

—

J” to /

18. By Example 2 of Section 9.2. the FoLirier series of the pe

riod 2 function f with f)t ) 2 for 0 < t < 2 is

4 4 (2OSflYTt 4 sininri
j(l)= ---—-———

3 ar— n— r it

S how that the terniwise derivative of this series clues tiot

converge to j(t).
19. Begin with the Fourier series

= 2 sin nt, — < I < .

and integrate termvise three tunes in succession to obtUO

the series

Tt
—2 cosnt -I-2

606 Chapter 9 Fourier Series tAethods

On the other hand, direct integration of (35) yields
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lu). O<r<L.:
F(t)

j(2L—1). L < i<2/..

‘bus the graph of F (1) is s rninetric around the line t = L

Fig. 9.3.7). Then the period 4L Fourier sine series of F

here

InTl
F(i) = 6,, sin

I iirt
6,,

= L / [(1) sin —i---— ft

‘21 nirl
-+

—
f)2L — nsin — lt.

;uhstitute a = 21. — i inthe second inteizral to derive the

cries (forD < i < 1.4

‘iar I
= Sf1

FIGURE 9.3.7. Construct ion of F from f in
Problem 2).

01c1 lial/-inultiple co.siile series) [,et /‘(t) he given for

< 1 < L, and define GO) forO < t < 2L as follows:

GO)
.1(1). 0<1 < L:

—f(2L—1). L<t < 2L.

Jse the period 41. Fourier cosine series of (.41 to derive

he series (for (1 < r < L)

fiT I
[U) = a,,cos

—--.

2
ri,

= / f(t) cos ---- mit

32 s—,
(._1)(fl+1)2 01

x(1) = sin—.
,,dd

112(112 _L4) 2

whereubstitute t = ir/2 and i = jr in the series of Problem 19

obtain the sumiamations

4 :‘_ in+l 74

v \5)

n 90’ — 720
,,=i

id
I I

34 54 74 Sib’

UkI iiol/-niuitiple sine series) Let J(I) he gien for

< I < L. and deli ne F( if forD < I < 2 L as follows:

(n odd).

23. Given: f(i) = i, 0 < t < ir. Dense the odd half-multiple
sine series (Problem 21)

8 (1
)01 1,2 itt

1(1) = —
sin—.

it- 2

24. Given the endpoi iii sal tie problem

— .v = 1. x(0)=0 .x’(ar)=O.

note that any constant multiple of sin (or /2) with ii odd

satisfies the endpoint conditions. Hence use the odd half—

multiple sine series of Problem 23 to derive the formal

FoLtrier series solution

v lie re

2 r’- flirt
= 10 /11 )sin di (ii odd),

L 21.—i 21.

25. In this prob lent we outline the proof of Ihecrent 2. SLIp—

pose that /‘ (1) is a piecewise continuous period 2L func

tion. Define

F( 1)
= / [fly) — fib] (Is.

where {ci,,) and b,,} denote the Fourier ceetficierits of

[(I). (a) Shusv directly that F(! -1—2 L) = F(t). so that

F is a continLi ous period 2L function and therefore has a

convergent Fourier series

liii “ hart flirt
F);) =

-- -+ (A cos— -1- B,,

(b) Suppose that n I. Shosv by direct computation that

L L
A,, = — —6,, and B,, = —ci,.

flit- ii:T

(c) Thus

[ f(s) ml’ = +

L 1 . thY-ri nrt
—I-- —I ci,, sin — —

nar L 1,

Finally, substitute t = 0 to see that

=
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9.3 Application Fourier Series of Piecewise Smooth Ftrnctions

Most computer algebra systems permit the use of unit step functions for the efficient
derivation of Fourier series of “piecewise-defined” functions. Here we illustrate the
use of Maple for this purpose. Ivlathenicitica and MATLAB versions can be found in
the applications manual that accompanies this text.

Let the “unit function” unit(t, a, b) have the value I on the interval ci t < b
and the value 0 otherwise. Then we can define a given piecewise smooth function
f(t) as a “linear combination” of different unit functions corresponding to the sepa
rate intervals on which the function is smooth, with the unit function for each inter
val multiplied by the formula defining f(t) on that interval. For example, consider
the even period 2ir function whose graph is shown in Fig. 9.3.8. This “trapezoidal
wave function” is defined for 0 <t <r by

f(t) = .unit(t. o.

-- (_t)unit(t.
, ) +(_)unitQ.

. ). (1)

It 71

FIGUPF 9.3.8. Even period 27r trapezoidal-wave function.

The unit step funciion (with values 0 for t < 0 and I fort > 0) is available in .liapIe
as the “Heaviside function.’ For instance, Heaviside(—2) = 0 and Heaviside(3)
I. The unit function on the interval [ci. bj can be defined b

unit : (t,a,b) —> Heaviside(t-a) - Heaviside(t—b):

Then the trapezoidal-wave function in Eq. (I)is defined for 0 t rr by

f : t —> (PiJ3)*uriit(t, 0, Pi/6) +

(Pi/2 t)*unit(t, Pi16, 5*Pi16) +

(-Pi/3)*unit(t, 5*Pi16, Pi):

We can now calculate the Fourier coefficients in the cosine series f(t) ao

Z a

a := n —> (2/Pi)*int(f(t)*cos(nSt), t0..Pi);

We then find that a typical partial sum of the series is given by

fourierSum := a(O)/2 + sum(a(n)*cos(n*t), n=1..25);
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cos(t) 2 cos(51) 2 cos(7t)
fouri erSum : = 2 — —

_____________

— —

25 r 49 YT

2 ,,/cos(llt) 2 v”cos(l3t) 2 /cos(l7i)
-I--—

121 r 169 yr 289 zr

—
2-qcos(l9t) 2I cos(23t) 2Icos(251)

361 r 529 r 625 zr

Thus we discover the lovely Fourier series

f(t)
=

(±)cosnt
(2)

vith a -l-——-l—-F——+-b pattern of signs, and where the summation is taken over

all odd positive integers ii that are lint multiples of 3. You can enter the command

plot(fourierSi.un, t=—2*Pi. .3*Pi);

to verify that this Fourier series is consistent with Fig. 9.3.8.
You can then apply this method to find the Fourier series of the following

period 2ir functions.

1. The even square-wave function whose graph is shovn in Fig. 9.3.9.

2. The even and oud triangular-wae functions whose graphs are showii in

Figs. 9.2.4 and 9.3.10.

3. The odd trapezoidal-wave function whose graph is shown in Fig. 9.2.5.

‘Then find similarly the Fourier series of some piecewise smooth functions of your

own choice, perhaps ones that have periods other than 2 and are neither even nor

odd.

(, I)

___________

I I

—It I I it i 2it

0 0

( —1) . —0

‘IGURE 9.3.9. Even period 2r square-wave function. FIGURE 9.3.10. Even period 2-r triangular-wae function.

Applications of Fourier Series

We consider first the undainped motion of a mass iii on a spring with Hooke’s
constant k under the influence of a periodic exieriial force F (t), as indicated in
Fig. 9.4.1. Its displacement .v (i) from equilibrium satisfies the familiar equation

It (2it.)

(ot,—)

nix” -1- kx F(t). (1)
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Example 2 Suppose that in = 2 kg and k = 32 N/rn as in EKainpie 1. Determine whether pure
resonance svill occur if F(r) is the odd periodic function defined in one period to he

-+10, 0<r<rr:
(a) F(t) =

—10, Jr<t<27r.

(b)F(t)= lOt, —lr<t<jr.

Solution (a) The natural frequency is o = 4, and the Fourier series of F(t) is

40/ 1 1
F(i)=— fsini—]——sin3i--(——sin5t +

3 5

Because this series contains no sin 4r tenn. no resonance occLirs.

(b) In this case the Fourier series is

-c l)fl_1
Ri) = 2)) sinnt.

Pure resonance occurs because of the presence of the term containing the factor
sin-i-i. I

Example 3 illustrates the near ,-esnance that can occur when a Single term in

the solution is magnifled because its frequency is close to the natural frequency W.

Example 3 Find a steady periodic solution of

lOx F(t),

where F(i) is the period 4 function with F(t) = 5r for —2 < t < 2 and Fourier

series

Solution When we substitute Eq. (11) and

20 (1)11*I
F(t)=z—Z-—- sin—.

ii n 2

in (10), we obtain

inr I
x(t)

= ::
t?1 -

11 Jr
i,, (— —a— +- I o)

. ,iri 20 (— 1)’
sin — = — sin

Jr 0 2
= I fl= I

We equate coefficients of like terms and then solve for h to get the steady periodic
so 1 ution

80 (_fl!l+ I mci
sinx%(t) —

n(40 — m2Jr2) 2n=i

xrt 2jrt 3Jrt
(0.8452) sin — (24.4111) sin —i—-- — (0. 1738) sin —i--- +

(10)

(ii)

—4
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The very large magnitude of the second lean results from the fact that coo = ‘ho
= 2r/2. Thus the dominant motion of a spring with the differential equation in

(10) xvould be an oscillation with frequency r radians per second, period 2 s, and

- amplitude about 24, consistent with the graph ofx0(t) shown in Fig. 9.4.5.

I 2 3 ‘I Damped Forced Oscillations

Now we consider the motion of a mass in attached both to a spring with Hookes

constant k and to a dashpot with damping constant c, under the influence of a pe
riodic external force F(i) (Fig. 9.4.6). The displacement x(l) of the mass from
equilibrium satisfies the equation

RE 9.4.5. The graph of
nix” - cx’ -j- kx = F(i). (12)

We recall front Problem 25 of Section 3.6 that the steady periodic solution of
Eq.(12)withF(i) = F0sinwtis

ujIil-i-iiint
0 i lit) v(1) = sln(wt — ci) (13)

i V

-

‘,....,, where

VU)

a = tan’ , 0 . (14)
RE 9.4.6. A damped k — nice2 — —

and—spring system with
at force. If P0) is an odd period 2L function with Fourier series

11)Tt
F(i) = sin—7--. (15)

then the preceding formulas yield, by superposition, the steady periodic solution

B,, sin(ce, t — ci,,)
x14t)

= 2... , (16)
i ,/(k — inco)2 (.)2

where cc,, nyr/L and a is the angle determined by Eq. (14) with this value of cc.

Example 4 illustrates the interesting fact that the dominant frequency of the steady

periodic solution can he an iii teic,1 iitultiplc’ of the frequency of the force F (t).

Exaniple 4

Solution We find that the Fourier series of F(t) is

Suppose that iii = 3 kg, c = 0.02 N/in/s. k = 27 N/ni, and F(i) is the odd period

2jr function with F(t) = art — 2 if 0 < t < Jr. Find the steady periodic motion

F(t) = sin3t+ sin5t+...). (17)

Thus B, = 0 for n even, B,, = 8/(arn3)for n odd, and cv,, = n. Equation (16) gives

8 sin(nt — ci,,)
xsp(1) (18)

77
.j iz\/7 — 3,2)2 -1— (0.02,i)2
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with

H- (0.0004) sin (51— 3.1437) —I- (0.0001 )sin(71 — 3.1428) H- (20)

Because the coefficient corresponding to ii = 3 is much larger than the others, the
response of this system is approxHinately a sinusoidal notion with fiecluency three
fillies that of the input force. Figure 9.4.7 shows .v(i) in comparison with the scaled
force I 0111)/k that has the appropriate dimension of distance.

What is happening here is this: The mass in = 3 on a spring with k = 27 has
(if we ignore the small effect of the dashpot) a natural frequency u = /k7i 3
rad/s. The imposed external force F(r) has a (smallest) period of 2sr s and hence a
fundamental frequency of 1 rad/s. Consequently. the tenn corresponding to ii =

in the Fourier series of F(t) (in Eq. (17)) has the same frequency as the natural
frequency of the system. Thus near resonance ibrations occur, with the mass com
pleting essentially three oscillations foreverv single oscillation of the external force.

This is the physical effect of the dominant n = 3 term on the right—hand side in
Eq. (20). For instance, you can push a friend in a swing quite high even if you
push the swing only every third time it returns to you. This also explains why some
transformers “hum” at a frequency much higher than 60 Hz.

This is a general phenomenon that must be taken into account in the design of
mechanical systems. To avoid the occurrence of abnormally large and potentiallY
destructive near resonance vibrations, the system must he so designed that it is not
sLibject to any external periodic force, sonic integral multiple of whose fundamental
frequency is close to a natural frequency of vibration. I

Example 1 Finally, let us add to the mass—spring system of Exam pIe I a dashpot with clamping

Continued constant c = 3 N/mIs. Then, since in = 2 and k = 32. the differential el]LlatiOn

satisfied by the mass’s displacement function xtt) is now

2x”+3x’ + 32.i = F(t), (21)

where F(t) is the periodic force function defined in Eq. (5). Figure 9.4.8 shOWS
graphs of both the steady periodic solution X%p(i) for the original undamped system

of Example I and a numerically calculated solution of Eq. (21) \Vith initial con
ditions x(0) 2 and x(0) = 1. As an initial transient solution determined bY
the initial conditions dies out. it appears that the damped solution x(r) 0flvergtS

to a steady periodic solution of (21). However, we observe two evident effeciS o

the damping—the amplitude of the steady periodic oscillation is decreased. and tIle

damped steady oscillations lag behind the undainped steady oscillations.

(0.02)n
a,, = tan — , . 0 a,, JT.

27—n-

With the aid of a programmable calculator, we md that

.v(1) (0.1061) sia( — 0.0008) -{- (1.5719) sin (3i — r)

(19)

—

—3

IOF(,

FIGURE 9.4.7. The imposed
force and the resulting steady
periodic motion in Example 4.

FIGURE 9.4.8. The steady
periodic solution x(t) and the
damped solution .v (r).
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Problems

md the .vteadv periodic .voli,iion .v,, (1) of each of the di!/eren
ii equations iii I tlirnugli 6. Use ci eowpiiter algelirn ,sv.slein
plot enough icons 0/ liii’ series to elete’rniine the i/sisal up

‘arance oft/ic graph o[x,, (I).

1. x” —I— 5x = FU), where 1(1) is the function of period
2 such that F(t) = 3 if 0 < r < jr. F(t) —3 if
er < t < 2re.

!. .v” —I- lOx = F/f), where F/f I is the even function of pe
riod 4 such that Hi) = 3 if 0 < t < 1, F/fl = —3 if
I <t <2.

3. x” —I- 3x = Ffl), where EU) is the odd funcdon of period
2x such that Fit) = 2t 110 < t < er.

1. .v’—)--4x = F(t), where F/i / is the even function of period
4 such that F(t) = 1’ if 0 < t < 2.

5. x”+ lOx = F(i). where F(i) is the odd tunction of period
2 such that F(t) = I _t iTO < t < 1.

. u”—f-2x = F(i), where F/i) is the even lunetion ol period
2r such that F(t) = sin i ilO < t < jr.

i each of Problc’,’n,v 7 iii irnigh 12, i/se soars in cuid I—bake ‘s
nistenit k fur ci niass-anel—sprii,g sv,vieni are giren. Deter,ni,ie
Izeiher or ii at pure resoiian cc si/I ccc ar iii ides the njhience
the gie’c’n external periodkfinse F) t ).

7. ni = I, Ic = 9; F/i) is the odd function of period 2x with
F(i)= lforO<t <er.

3. as = 2. k = 10: F(t) is the odd fu nction of period 2 with
F(t)=IforO<i <1.
in 3, k = 12; F(t) is the odd function of period 2r
withF(t)=3forO<t < x.

in = I. Ic = 4n2; F/i) is the odd function of period 2 with
F(t) = 21 for 0 < t < 1.

1. in = 3, Ii 48; F(r) is the even function of period 2jr
with F/I) = t forD < t < r.

2. ni 2, k = 50; F(i) is the odd function of period 2re
with F(t) = ret — t for// < I <xr.

In (‘ac/i of Prnh/c’n,s 13 tluvugh 16, the iulue.c o/ui. c, uzid Isfisr
a clamped inuss—aiic/- v/siiieg sv.stens arc’ iiien, Find the steady
periodic 50db —in the focat of Ecj. (16)—of the mass tinder
//ic’ influence oft/u’ ,qii’cn external lone F (I). Contpine i/ic cc—

efficients and phase au ic’s for i/ic first i/lice ncn:era teioi.v iii

the series fr .x,-, (I).

13. iii = I. c = 0.1 ,k = 4; FIt) is the force ofProblern I.
14. iii = 2. c = 0.1. Ic = 18: F/f) is the force of ProblemS.

15. ni = 3. c- = I. k = 30: F(t) is the force ofProhlem5.
16. ni = I, c 0.01. k 4: F/i/is the force of Problem 4.
17. Consider a forced damped mass-and-spring system with

iii = slug, c = 0.6 lb/fl/s. k = 36 lb/ft. The force F( ii

is the period 2 (s) function with F/I) = 15 if 0 < t < 1.
F/t) = —15 if I < r < 2. (a) Find the steady periodic
SUILI lid) Li in the forni

x(t) = h sin/nxi — OH).

‘I =

(b) Find the location—to the nearest tenth of an inch—of
the mass when I = 5 s.

18. Consider a forced damped mass-and-spring system with
in = 1, c = 0.01, and Ic = 25. The force F/i) is the
odd function of period 2 with PU) = t if 0 < t <

F/i) = — I if n/2 < t < ir. Find the steady periodic
notion; compute enough terms of its series to see that the
dominant frequency of the motion is jii’e times that of the
external force.

19. Suppose the functions f(t) and gU) are periodic with pe
riods P and Q, respectively. If the ratio P/Q of their pe
riods is a rational number, show that the sum f (t) + g(t)
is a periodic function.

20. lfp/q is irrational, prove that the function fit) = cos ,‘it —I—
cos eji is not a periodic function. Sii,ggc’stiori: Show that
the assumption [fi + L ) = f/i) would (upon substituting

0/imply that p/cj is rational.

Hti
— k.

di

Heat Conduction and Separation of Variables

The nosE 1 niportanl applications of Fourier series are to the solittion of partial differ
ential equations by means of the method of separation of variables that we iutrodttce
in this section. Recall that a pcu-tio/ ch.Iiereiiricil eqi ott in is one containing one or
more partial derivatives of a dependent variable that is a fttnction of at least two
independent ‘;triahles. An example is the one-dimensional beat equation

in xvhich the dependent variable ii is an urtktiown function of x and i, and k is a
given positive Constant.

(I)



616 Chapter 9 Fourier Series Methods

The Heated Rod

Equation (I) models the variation of temperature a with position x and time t in a
heated rod that extends along the .r-axis. We assume that the rod has uniform cross
section with area A perpendicular to the axis and that it is made of a homogeneous
material. We assume further that the cross section of the rod is so small that u is
constant on each cross section, and that the lateral surface of the rod is insulated so
that no heat can pass through it. Then u will, indeed, be a function of x and t, and
heat will flow along the rod in only the .v-direction. In general, we envision heat as
flowing like a fluid from the warmer to the cooler parts of a body.

The heat flux (x, 1) in the rod is the rate offlow of heat (in the positive x
direction) at time t across a unit area of the rod’s cross section atx. Typical units for

are calories (of heat) per second per square centimeter (of area). The derivation
of Eq. (1) is based on the empirical principle that

(2)

where the positive proportionality constant K is called the thernial conductivity
of the material of the rod. Note that if u, > 0, then < 0, meaning that heat is
flowing in the negative v-direction, while if u < 0, then > 0, so heat is flowing
in the positive x-direction. Thus the rate o fheat flow is proportional to zu , and the
direction of heat flow is in the direction along the rod in which the temperature a is
decreasing. In short, beat flows from a warm place to a cool place, not vice versa.

Now consider a small segment of the rod corresponding to the interval jr. x +

AOx, n 4(r + , x1, as shown in Fig. 9.5.1 . The rate of flow R (in calories per second) of heat into
this segment through its two ends is

S

R = A(x, t) — Aq5(x-l-Ar,t) = KA[u jx-l- Ac,t) —
u(x, fl]. (3)

FIGURE 9.5.1. Net flow of heat
into a short segment of the rod.

The resulting nine rate of change u, of the temperature in the segment depends
on its density S (grams per cubic centimeter) and specific heat c (both assumed
constant). The specific heat c is the amount of heat (in calories) required to raise by
10 (Celsius) the temperature of I g of material. Consequently chu calories of heat
are required to raise l cm3 of the material from temperature zero to temperature a.
A short slice of the rod of length dx has volume A clx, so chit A dx calories of heat
are required to raise the temperature of this slice from 0 to ii. The heat content

Q(t)
= f c&Au(x.t)dx (4)

of the segment [x, ‘c -I— xj of the rod is the amount of heat needed to raise it from
zero temperature to the given temperature it (x, t). Because beat enters and leaves

the segment only through its ends, we see from Eq. (3) that

Q’(t) = K A[u (x + x, t) u (x, 1)], (5)

because R = clQ/dt. Thus by differentiating Eq. (4) within the integral and applY
ing the mean value theorem for integrals, we see that

r -I-

Q’(t)
= J chAn, (x, t) clx cSAu, (, t) x (6)

S
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for some in (x, .v —1- Ax). Upon equating the values in Eqs. (5) and (6), we get

cAu, (. t) A.v = KA[u, (x -b .v, 1) — u Cv, t)1, (7)

so

— u Cv + Ax, I) — ii Cv, t)
ii1(.v, t) k , (8)

where

(9)

is the (hernial diffusivity of the niaterial. We now take the limit as .v — 0, so
.v (because lies in the interval [.v, .v +- x I with fixed left endpoint x). Then

the two sides of the equation in () approach the two sides of the one-dimensional
heat equation

dii d2i,
—=k——-. (I)
di dx—

Thus the temperature uC, 1) in the thin rod with insulated sides must satisfy this
partial differential eqLlati on.

Boundary Comlitions

Now suppose that the rod has finite length L, extending from x = 0 to .e = L.
Its temperature function ii (x, 1) will be determined among all possible solutions
of Eq. (1) by appropriate subsidiary conditions. In fact, whereas a solution of an
ordinary differential equation involves arbitrary cojistaijis, a solution of a partial
differential equation generally involves arbitrary [mctinIs. In the case of the heated
rod, we can specify its temperature function /C) at time t = 0. ‘This gives the
,nitiui cüiidiiion

uCr,0) = f(x). (10)

We may also specify fixed temperatures at the two ends of (lie rod. For instance, if
each end were clamped against a large block of ice at temperature zero, we would
have the eiulpoinl rmthtwiis

u(0,t)=it(L,t)=0 (forallt > 0). (Ii)

Combining all this, we get the boundary value proNeni

d1 32

(0<x<L, i>O); (12a)
01 dv

ii(0, 1) u( L, t) = 0, (t > 0), (1 2b)

ti(x,0) = [Cv) (0< x < L). (12c)
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Figure 9.5.2 gives a geometric interpretation of the boundary value problem
in (12): We are to find a function ti(x. t) that is continuous on the unbounded strip
(including its boundary) shaded in the ti-plane. This function must satisfy the
differential equation in (12a) at each interior point of the strip, and on the boundary

= 0 u = 0 of the strip must have the values prescribed by the boundar\’ conditions in (1 2h) and
(I 2c). Physical intuition suggests that if f(x) is a reasonable function, then there
will exist one and only one such function u(v, 1).

___________ __________ ___________

Instead of having fixed teniperatures. the two ends of the rod might be insu
n=f(x) 1. lated. In this case no heat would flow throuch either end, so we see from Eq. (2)

FIGURE 9.5.2. A ceometric
that thc conditions in ( l2b) would he replaced in the boundary value problem by the

interpretation of the boundary endpoint conditions

value problem in Eqs. (1 2a)—( I 2c.
Uk (0,1) = Uk(L. i) = 0 (13)

(for all 1). Alternatively, the rod could be insulated at one end and have a fixed
temperature at the other. This and other endpoint possibilities are discussed in the
Problems.

Superposition of Solutions

Note that the heat equation in (I 2a) is linear. That, is. arty linear combination
(I = Clii + (:21(2 of two solutions of (I 2a) is also a solution of ( 12a); this fol
lows initnecliately front the linearity of partial differentiation. It is also true that if
u1 and 112 each satisfy the conditions in ( 12b). then so does any linear combina
tion ii = C1 t1 + c ii. The conditions in (1 2h) are therefore called hoinogencous
boundary conditions (though a more descriptive term might be linear boundary con

ditions). By contrast, the final hoLinclary condition in ( l2c) is not homogeneous; it
is a nonhomogeneous bou ndary condition.

Our overall strategy for solving the boundary value problem in (12) will be

to find functions u1, 1(2, 1(3. . . . that satisfy both the par ial di fferential equation

in (I 2a) and the homogeneous boundary conditions in ( l2b). and then attempt to

combine these functions by superposition. us if they vere building blocks, in the

hope of obtaining a solution ii = c1o1 +c2u2+ . . that satisfies the nonhomogeneous
condition in (I 2c) as well, Example I illustrates tills approach.

Example 1 It is easy to verify by direct substitution that each of the functions

u1 (x, t) e’ sinx, ii(s, 1) = e_4t sin 2v, and 113(x, 1) = c_St sin3x

satislies the equation a1 = wu. Use these Functions to construct a solution of the

boundary value problem

((i( d2it
(O<v<. i>O: (14a)

lit dx—

n(0,!) =it(7r,t)=O. (11-b)

u(x, 0) 80sin3x = 6Osinx — 20 sin 3x. (14c)

u(v.f) =Ctut(x.t)—(-c’i12(x,1)--f-c’;i(C. i)

Ciet sins ce ‘ sin 2x + c3e ‘ sin 3x

Solution Any linear combination of the form
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satisfies both the differential equation in (14a) and the homogeneous conditions in
(ITh). Because

u(x. 0) = c1 sinx + (2 sin 2x -I— ( sin 3x.

we see that we can also satisfy the nonhomogeneous condition in (14c) simply by
choosing c1 60, c2 = 0. and c = —20. Thus a solution of the given boundary
value problem is

u(. t) 60e’ sin x — 20e9’sin 3.v. U

The boundary value problem in Example I is exceptionally simple in that oniy
a finite number of homogeneous solutions are needed to satisfy by supelposition the
nonhomogeneous boundary condition. Itis more usual that an innite sequence 01,

(2, 113, . .. of functions satisfying (12a) and (l2b) is required. If so, we xrite the
infinite series

u(x, t) = Ec,,ii,,(x. t) (15)
i,=1

and then atternptto determine the coefficients c1, , c3, . . . in order to satisfy (12c)
as well. The following principle summarizes the properties of this infinite series that
must be verified to ensure that we have a solution of the boundary value problem in
(12).

PRINCIPLE Superposition of Solutions

Suppose that each of the functions i, lh, 03, . .. satisfies both the differential
equation in (12a) (forD < .r < L and t > 0) and the homogeneous conditions
in (12b). Suppose also that the coefficients in Eq. (15) are chosen to meet the
following three criteria:

1. For 0 < .v < L and t > 0, the function determined by the series in (15)
is continuous and terinwise differentiable (once with respect to t and twice
with respect to x).

2. c,, it,, Cv, 0) .f() forD < x < L.
fl

3. The function u(x, t) determined by Eq. (l5) interior to the strip 0 .r
L and t 0, and by the boundary conditions in (12b) and (12c) on its
boundary, is continuous.

Then u(.r, t) is a solution of the boundary value problem in (12).

In the method of separation of variables described next, we concentrate on
finding the solutions U , zt, 03. . . . satisfying the homogeneous conditions and on
determining the coefficients so that the series in Eq. (15) satisfies the nonhomoge
neous conditions upon substitution of t = 0. At this point we have only afriiici1
series solution of the boundary value problem—one that is subject to verification of
the continuity and differentiability conditions given in part (I) of the superposition
principle stated here. If the function f(s) in (12c) is piecewise smooth, it can be
proved that a formal series solution always satisfies the restrictions and, moreover,
is the unique solution of the boundary value problem. For a proof, see Chapter i of
R. V. Churchill and J. W. Brown, Fourier Series and Bouizdan’ Valuie Problems, 3rd
ed. (New York: McGraw-Hill, 1978).
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Separation of Variables

This method of solving the boundary value problem in (12) for the heated rod was
introduced by Fourier in his study of heat cited in Section 9. 1. We first search for
the building block functions ii1’ ih, 13, . . . that satisfy the differential equation

= and the homogeneous conditions u (0. 1) = ,t(L, 1) = 0, with each of
these functions being of the special form

ii(x, t) = X(s)T(i) (16)

in which the variables are ‘‘separated’’—that is, each of the building—block functions
is a product of a function of position x (only) and a function of time / (only). Sub
stitution of (16) in n = ku1, yields KT’ = kX”T, where for brevity we write T’
for T’(t) and X” for X”Cv). Division of both sides by kKT then gives

XI! T’
(17)

The left-hand side of Eq. (17) is a function of .v alone, but the right—hand side is a
function of i alone, lit is held constant on the right-hand side, then the left—hand
side X”/X must remain constant as a varies. Similarly, if x is held constant on
the left—hand side, then the right-hand side T’/kT must remain constant as t varies.
Consequently, equality can hold only if each of these two eapressions is the same
constant, which for convenience we denote by —A. Thus Eq. (17) becomes

X” T’
(18)

K kT

which consists of the two equations

K(s) - AX(v) = 0, (19)

T(i) -b AkT(t) = 0. (20)

It follows that the product function u (a, 1) = K (a ) T’ (t ) satisfies the partial differen
tial equation u, = if X(x) and T(t) separately satisfy the ordinary differential
equations in (1 9) and (20) for some (common) value of the constant A.

We focus first on X(x). The homogeneous endpoint conditions are

uC, 0) = X(0)T(t) = 0, u(L, t) = X(L)T(t) 0. (21)

Tf T (t) is to be a nontrivial function oft, then (21) call hold only if X (0) = X (L)
0. Thus K(x) must satisfy the endpoint value problem

X” + AX = 0,
(22)

X(0)=0, K(L)=0.

This is actually an eigenvalue problem of the type we discussed in Section 3.8.

Indeed, we saw in EKample 3 of that section that (22) has a nontrivial solution if

and only if A is one of the eigenvalues

A,, = ii 1, 2, 3 (23)
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and that an elgenfunction associated with A,, is

Xu(x)=sinfF ii=1,2,3 (24)

Recall that the reasoning behind (23) and (24) is as follows. If A = 0, then
(22) obviously implies that K(s) 0. If). = -a2 cO then

K(x)=Acoshax+Bsinhax,

andthenthecosiditions X(O) =0 = K(LjimplythatA = B=0. Hencethe only
possibility for a nontrivial elgenfunction is that A = a2 >0. Then

X(s) = Acosax+Bsinax,

andtheconditions X(0) =0 = X(L) then implythatA = Oandthatcr =nr/L
for some positive integer a. (Whenever separation of variables leads to an unfa
miliar eienvalue problem, we generally must consider separately the cases A =0,
A=-u- <0,andl=u2>Oj

Now we turn our attention to Eq. (20), knowing that the constant A mum he
one of the elgenvalues listed in (23). For the nth of these possibilities we write
Eq.(20)as

(25)

in anticipation of a ditbmnt solution r(t) foreachdifferent positive integer a. A
nontrivial solution of thisequation is

7’,,(t) = exp(—n2w2kt/L2). (26)

We omit the arbitrary constant of integration because it will (in efibct) be inserted
later.

Th summarize our progress, we have discovered the two assodated sequences
iili’ and (j7’ of functions given in (24) and (26). lbgether they yield the se
quence of building-block product functions

u,(i,t) =X1(x) Ta (I) =e (—n2ir2kt/L2)sin f!!!, (27)

a = 1,2,3 &whofthesefunctionssatistlesboththeheatequationu, =

kzr and the homogeneous conditions u(0, t) = u(L, t) = 0. Now we combine
these functions (supeqoskion) to attempt to satisfy the nonhomogeneous condition
u(s, 0) = ftc) us welL We therefore form the infinite series

u(x, I)
= c,ua(x,l) =

c,, exp (—a’ ir2kilL2)sinE!. (28)
a—I a—I

It remains only to determine the constant coefficients {c,, )7° so that

u(s, 0)
=

c, sin = f(s) (29)
a—I

forO cs cL. Butthis will be the Fourier series of f(flon 10, LI provided that
we choose

c1 =is=./’f(x)sin!!fdx (30)

forexhn = 1,2,3 Thus we have the following result
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THEOREM 1 The Heated Rod with Zero Endpoint Temperatures

The boundary value problem in (1 2) for a heated rod with zero endpoint temper
atures has the formal series solution

u(x, t)
=

b,1 ep (—n2n2ki/L2) sin (31)

Material k (cm2/s)

Silver I .70

Copper 1.15
Aluminum 0.85
Iron 0.15
Concrete 0.005

FIGURE 9.5.3. Some thermal
diffusivity constants.

Example 2

where the fb } are the Fourier sine coefficients in Eq. (30) of the rod’s initial
temperature function f(x) = a (x, 0).

Renark: By taking the limit in (31)terrnwise as t — , we get n(x. )
0, as we expect because the two ends of the rod are held at temperature zero. •

The series solution in Eq. (31) usually coin’erges quite rapidly, unless I is very
small, because of the presence of the negative exponential factors. Therefore it is
practical for numerical computations. For use in problems and examples, values of
the thermal diffusivity constant for some common materials are listed in the table
iii Fig. 9.5.3.

Suppose that a rod of length L 50cm is immersed in steam until its temperature
is U0 100°C throughout. At time i = 0. its lateral surface is insulated and its two
ends are iruhedded in ice at 0°C. Calculate the rods temperature at its midpoint
after half an hour if it is made of (a) iron: (b) concrete.

+1 if0<t<L.

nodd
n L —1 if —L <i <0

that we derived in Example I of Section 9.2. It follows that the Fourier sine series
of .f(-) a0 is

4ii I . IIJTX
f(.v) = L.. —Slfl

L
nodd

for 0 < x < L. Hence the Fourier coefficients in Eq. (3 1) are given by

= .{ njr

4n
forn odd,

0 forn even.

and therefore the rods temperature function is given by

4tt 1 / ,i2-rki ‘\ .

((Cv, t) = — exp I — I sin
T ii \, L2 J L

ii odd

Solution The boundary value problem for this rod’s [eniperature function u(x, t) is

=

n(0,t)=u(L, 1) = 0;

n (x, 0) = ho

Recall the square—wave series
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Figure 9.5.4 shows a graph a = u(x,t) with 00 = 100 and L = 50. As t increases,

we see the maximum temperature of the rod (evidently at its midpoint) steadily
decreasing. The temperature at the midpoint .v = 25 after t = I 800 seconds is

u(25. 1800)
= ( 1)°’

exp ( I812k)

n odd

(a) With the value k = 0.15 that was used in Fig. 9.5.4, this series gives

0(25, 1800) 43.85 19 — 0.0029 -b 0.0000 — . 43.85°C.

This value t,(25, 1800) 43.85 is the maximum height (at its midpoint x = 25)
of the vertical sectional curve u = ufv, 1800) that we see at one “end” of the
temperature surface shown in Fig. 9.5.4.

(b) With k = 0.005 for concrete, it gives

11(25. 1800) 122.8795 — 30.8257 -F 10.4754 — 3.1894

-1- 0.7958 —0.1572 —i- 0.0242 — 0.0029

-1- 0.0003 — 0.0000-H• 100.00°C.

Thus concrete is a very effective insulator.

50.

FIGURE 9.5.4. The graph of the temperature function a (x, 1) in Example 2.

IrisulateJ Endpoint Conditions

We now consider the boundary value problem

dii 32u
=

dt iLr

u5(0,t) u5(L,t) =zO.

i,Oj,0) =

(0<x < L, r>0); (32a)

(32b)

(32c)

which corresponds to a rod of length L with initial temperature f(x), but with its
two ends insulated. The separation of variables uC, t) X(x)T(i) proceeds as in

too

000
i(s)

1500

Il)
20

31)
x (cii)
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Eqs. (16) through (20) without change. But the homogeneous endpoint conditions
in (32b) yield X’(O) = X’(L) 0. Thus XC) must satisfy the endpoint value
problem

K” + )X = 0:
(3)

X’(O) 0. X’zz().

We must again consider separately the possibilities A = 0. A = —a2 < 0. and
=

> 0 for the eigenvalties.
With A = 0. the general solution of X” = 0 is X (.v) Ax -I— B, so X’(x( =

A. Hence the endpoint conditions in (33) require A = 0. hut B may be nonzero.
Because a constant nuiltiple of an cigenFunction is an eigenfunction. we can choose
any constant value we wish for B. Thus, with /3 = 1, we have the zero elgenvalue
and associated eigen function

A0 = 0, Ko(x) I. (34)

With A = 0 in Eq. (20). we get T’(i) = 0, so we nay take T)(t) I as well.
With A = _a2 0, the general solution of the equation X” — 2X = 0 is

XCr) = Acoshx -1- B sirihax.

and we readily verify that X’(O) K’(L) = 0 only if A = B = 0. Thus there are

no negative eigen\al ties.
With A = > 0. the general olution of X” -—

a2K 0 is

XCI.) = A cos.v -1- B sin ox,

X’Cv) = —Asinax + Bacosex,

Hence X’(O) 0 iinpl ies that B = 0. and then

K’(L) = —AsinaL =0

requires that a L he an integral multiple of r. because a 0 arid A 0 if we are
to have a nontrivial solution. Thus ve have the infinite sequence of eigenvalues and
associated ei2enfunctions

‘zrx
A,, = a = —s—. X,,(.( = cos (35)

for n = I, 2, 3 Just as before, the solution of Eq. (20) with A ,i2r2/L2 is

7,(i) = exp (—n2ir2kt/L2).
Therefore, the product functions satisfying the homogeneous conditions are

U Cv, I) I u,,(x. 1) = exp(n22k!/L2)cos (36)

for n = I, 2,3,.... Hence the trial solution is

u (c. t) c c,, exp (—ii22kt/L2)COS
L’

(37)
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2 L

(in / f() cos

THEOREM 2 Heated Rod with Insulated Ends

The boundary value problem in (32) for a heated rod with insulated ends has the
formal series solution

u(x, 1) = +- exp (—n2ir2kt/L2) cos (40)

where the {a} are the Fourier cosine coefficients in (39) of the rod’s initial tein
perature function 1(x) = u (x, 0).

Remark: Note that

the avenige value of the initial temperature. With both the lateral surface and the
ends of the rod insulated, its original heat content ultimately distributes itself uni—
formnly throughout the rod.

lij =

ii (0, 1) = u(50, 1) = 0,

ti(.v, 0) = 1(x).

Now substitution of L 25 in the even triangular-wave series ofEq. (15) in Section
9.3 (where the length of the interval is denoted b 2L), followed by multiplication
by 1, yields the Fourier cosine series

400 1 nrr.r
f(s) = 50— —i- —cos

To satisfy the nonhomogeneous condition u(x. 0) = f(s), we obviously want
Eq. (37) to reduce when t = 0 to the Fourier cosine series

a0 iirx
f(x)

=
-1-- Un C05 —.

where

(38)

(39)

for in = 0, 1,2 Thus we have the following result.

= ff(s)dx.

Example 3

(41)

We consider the same 50-cm rod as in Example 2, but now suppose that its initial
temperature is given by the “triaigular function” graphed iii Fig. 9.5.5 - At tinle

= 0, the rod’s lateral surface liid its two ends are insulated. Then its temperature
function ii(x, t) satisfies the boundary value problem

rIGURE 9.5.5. The graph of the
niti a! temperature function
‘Cr, 0) = f(s) in Example 3. (for (I < x < 50) of our initial temperature function. But in order to match

terms with the series in (40) with L 50, we need to exhibit terms of the forn
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cos(iirx/50) rather than tenns of the form cos(nJrv/25). Hence we replace n with
n/2 throughout and thereby rewrite the series in the form

1600
[‘Cv) = 50 —

—--

n26.Ifl...

I OTtX
cos

50

Problems

note that the sLtlnnultion runs through all positive integers of the form 4in —2. ‘Then
Theorem 2 implies that the rod’s temperature function is given by

1600 I / n2yr2kt\ njrv
u(v. t) = 50— — exp I — I cos

2 \ 2500 / 50
n=2.ri. ID..

Figure 9.5.6 shows the graph ii = u(x. 1) ftr the first 1200 seconds, and we see the
temperature in the rod beginning vith a sharp maiinuin at the midpoint .v 25,
but rapidly “averaging out’’ as the heat in the rod is redistributed with increasing 1.

I

E

FIGURE 9.5.6. The graph of the temperature function uC. i) in EKainpIe 3.

Finally, we point out that. although we set tip the boundary value problems ill

(12) and (32) for a rod of length L. they also model the temperature it (.i, 1) within
the infinite slab 0 x L in three—dimensional space if its initial temperature •/‘(_r)
depends only on x and its two faces x 0 and .v = L are either both insulated or
both held at temperature zero.

Solve the boundary ia/ne pivblenus in Problems I thrniuh 12.

1. u, 3n, , 0 < x < r, 1 > 0: u(0. 1) = our. I) = 0,
u(x, 0) = 4sin 2.v

2. u, = l0ii, 0 < x < 5. t >0; u(0.t) u(5, 1) 0,
u(x, 0) = 7

3. ii, = 2u . 0 < x < 1, 1 > 0: u(0. 1) it(1. t) 0,
u(x. 0) = 5 sin rx — sin 3yr.v

4. ii = n. 0 < .v < , 1 > 0: u(0.t) = ui(r j) 0,
uifv.0) 4 sin 4.v cos2x

5. u, = 2n. 0< x <3, t > 0; u(0.t) = 11(3,1) 0,
u,fv.0)=4cosr.v — 2cos ‘rx

6. 2n = it,,, 0 < .v < 1, 1 > 0: ut(0, I) = u(1, I) 0,
u, (r. 0) = 4 sin rx cos yrs

211051)
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7. So = art. 0 < .v < 2. 1 > 0: u(l. 1) = u(2. 1) = 0.
,t(.v. 0) cos— 2rx

8. a, = ii,, () < u < 2.i > 0: ‘,A0, I) = a, (2,!) = 0.

oCr, 0) = I0coszr.vcos3rx

9. lOu, =u,.0 < .v <5.1 > 0;u(0,t) =it(5,I) =0.
ufv, 0) = 25

16. 5u, = n,,, 0 < .v < 10,! > 0: u(0. 1) u( 10.1) = 0.
o (.v, 0) = 4x

11. 5,i = n,., 0 < .v < 10. r > 0: ujO. 1) = n, (10. t) = 0.
U (.v, 0) = 4.v

12. i,, = ,,,0 < .v < 100.1>0: n(0.t) =ti(l00.1) =0.
oCr, 0) = .v(100 x)

13. Suppose that a rod 41) cm long with insulated lateral stir—
face is heated to a uniform temperature of 100° C, and that
at time I = 0 its two ends are embedded in ice at 0’ C. (a)

Find the l’ormal series solution for the temperature uCv .1)

of the rod. (b) In the case the rod is made of copper.
show that after 5 rim the temperature at its midpoint is
about 15°C. (c) In the case the rod is made of conci-ete.
use the first term of the series to find the time iequired for
its midpoint to cool to 15 °C.

14. A copper rod 50 ciii long with insulated lateral surface has
initial temperature itCv .1)) 2.v, and at time! = 0 its two

ends are insulated. (a) Find n(_v. 1). (Ii) What will its
temperature he at .v = 10 aFter I ad ii? (c) After approxi —

nately how long will its temperature at .e 10 be 45° C?

15. The two tilces of tile slab I) S 1. are kept at tempera
ture zero, and the initial temperature of the slab is given by
oCr. 0) = A (a constant) ‘or 0 < .v < L12. r,Cv. 0) = 0
for L/2 < u < L. Derive the flirnial series solution

it(v, 1) =

IlYTS4A siif0,i1)
exp (—u22ir/L2)sin

ii

16. Two iron slabs are each 25 ciii thick. Initially one is at
temperature I 00° C throLighoilt and the other is at temper—
attire (Y C. At time I = I) they are placed ‘ace to face, and

their outer faces are Lept at 0’ C. (a) Use the result of
Problem 15 to verify that alter a half hour the temperature
of their common lace is approxi match’ 22° C. (U) Sup—
pose that the two slabs are instead made of concrete. How
long will it he until their common face reaches a tempera—
tun ol’ 22 C?

17. (Steady-state and transient temperatures) Let a laterally
insulated rod with initial temperature u Cv, 0) = fLu) have
fixed endpoint temperatures 1(0, 1) = A and u (L ,t) = B.
(a) It is observed empirically that as I — +-, uCv. I

approaches a steady-state temperature ,i,,(.v) that corre
sponds to setting u, = 0 in the boundary value problem.
Thus ii,, (.s ) is the solution of the endpoint value problem

= 0: o,(O) =A. ti(L) = B.

Find o, Cv ). (b) The transient temperature Uir(X. 1) S

defined to he

it, Lv.!) = itCv. 1) —

Show that ii,. satisfies the boundary value problem

dU,r1itr

hi

it,,)O, I) tt,,(L, 1) = 0.

Cv. 0) = g Cv) = f Cv) — ii

(c) Conclude from the formulas in (30) and (31) that

uCv.! ) u,(x) -+ 1(,rCv, 1)

where

i1r.v
m,,,(x) eXp (—iirrlct/L) sin

2 r’- ivr.v
= ,/ f(.’) — ii,, Cv)) sin Jv.

18. Suppose that a laterally insulated rod with length L = 50
and themnal diffusivity k I has initial temperature
o Cv, 0) 1) and endpoi lit temperatures u(0. 1) = 0.
ii(50, t) 100. Apply the result of Problem 17 to show
lii at

oCr. 1) =

200 “ ( — I (fl_i

2.v — — exp(—n-i Icr 250(1) sin

19. Suppose that heat is generated within a laterally insulated
rod at the rate olqCv. 1) calories per second perc uhic ceri—
linieter. Extend the derivation of the heat equation in this
section to derive the eqLiation

(II — qfx. t)

0t hr2

20. Suppose that en rrent flowing through a lateral lv insulated
rod generates heat ill a constant rule: then Problem I 9
yields the CLI LIitiOfl

di,
= k2— + C.

d! Lx—

Assume the boundary conditions it(0.t) = u(L, r ) = 0
and tiCu. 0) = [Lv). (a) Find the steady—state tempera
tu re ii,, Cv) determined by

0=k-+C. m,(O) = n,(L)=0.
n.y —

(b) Show that the transient temperature

tt,,(, t) = oCx’, t) —
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2 1L

C,’
= J [j(x) — uC]Sifl —-— di.

21. The answer to part (a) of Problem 20 is u,,(.v) = C.x(L —

.r)/2k. If f(s) Din Problem 20, so the rod being heated
is initially at temperature zero, deduce from the result of
part (b) that

Cx
nIx,!) = ---(L — x)

4CL2 I , , , mrx
—

— exp (—irrr-kt/L ) sin
ii odd

22. Consider the temperature n(x, t) in a bare slender wire
with u(0. t) = n(L, t) = t) and ii(x. 0) = f(s). In
stead of being laterally insulated, the wire loses heat to a
surrounding medium (at fixed temperature zero) at a rate
proportional to oft, t). (a) Conclude from Problem 19
that

do B2o
=k— —ho,

dt dx
where Ii is a positive constant. (b) Then substitute

of,!) = e”v(x, t)

9.5 Application

to show that uft, t) satisfies the boundary value problem
having the solution given in (30) and (31). Hence con
clude that

u(.v. 1) = e” sc,, CX (_ii22kt/L)

where
2 L mrs

=
f(x)sin C/X.

23. Consider a slab with thermal conductivity K occupying

the region 0 x L. Suppose that, in accord with New
ton’s law of cooling, each face of the slab loses heat to
the surrounding medium (at temperature zero) at the rate
of [In calories per second per square centimeter. Deduce
from Eq. (2) that the temperature u (x, t)in the slab satis
fies the boundary conditions

hu(0. 1)— u(0, 1) = 0 = hu(L, 1)-I— u(L,t)

where/i = Il/K.

24. Suppose that a laterally insulated rod with length L, ther
mal diffusivity k, and initial temperature n (x, 0) = f(s)
is insulated at the end .r = L and held at temperature zero
at .r = 0. (a) Separate the variables to show that the
eigenfunctions are

ii:’-i I
X,,(x) = sin

2L

for I? odd. (b) Use the odd half—multiple sine series of
Problem 21 in Section 9.3 to derive the solution

uc, 1) = c,, exp (—n2rrki/4L2)sin
; odd —

where

Heated-Rod Investigations

2 L mrs
C,,

= f f(s) sin —i—— dx.

First let’s investigate numerically the temperature function

4t0 1 / iz2yr2kt\ . mrs
u(x, t) = — — exp I — I sin

ii \ L2 / L
n odd

of the heated rod of Example 2, having length L 50 cm, uniform initial tell

perature 00 = 100°C, and thermal diffusivity k 0.15 (for iron). The following

MATLAB function sums the first iV nonzero lertns of this series.

function u = u(x,t)

k = 0.15;

L = 50;

uO = 100;

% diffusivity of iron

% length of od

% initial temperature

% initial sum

satisfies the boundary value problem

dtttr — k—
lurID. t) = ‘tt,( L. t) = 0,

ltir(X, 0) = gf = f(s) —
Hence conclude from the formulas in (34) and (35) that

o (x, t) = iu(x) —i— e,, exp (—n rki/L) sin

where

S = 0;
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N 50;

for 11 = 1:2:2N+1;

% number of terms

end

S = S

U = 4*uO*SJpi;

This function was used to plot Figs. 9.5.7 through 9.5.10. The corresponding IVlopIe
and Matheniatica functions are provided in the applications manual that accontpa—
nies this text. As a practical mattel. IV = 50 terms suffice to give the value n(x, 1)

after 10 seconds (or longer) with two decinial places of accuracy throughout the
interval 0 x 50. (How might you check this assertion?)

125

101)

75

50

25

FIGURE 9.5.7. The graph of
a (.v, 30) giving rod temperatures

alter 30 SeCDI1LI S.

FIGU RE 9.5.8. The graph of
u(v, I 800) giving rod temperature

after 30 nhinutes.

FIGURE 9.5.9. The araph of
im(25. 1) giving the midpoint
temperatures of the rod.

4951 I

1570 1572 157.1 576 578 1580

FIGURE 9.5.10. Mummification of
the graph of ii(25. 1) giving the
midpoint temnperatLlres of the rod.

The graph of nCt, 30) in Fig. 9.5.7 shows that after 30 seconds the rod has
cooled appreciably only near its two ends and still has temperature near 100C for
10 x 40. Figure 9.5.8 shows the graph of u(x, 1800) after 30 minutes and
illustrates the fact (?) that the rod’s Inaximuni temperature is always at its midpoint,
where x — 25.

The graph of im(25, t) for a two-hour period shown in Fig. 9.5.9 indicates that
the midpoint temperature takes something more than 1500 seconds (25 minutes) to
fall to 50°. Figure 9.5.10 shows a magnification of the graph near its intersection
point with the horizontal line tt 50 and indicates that this actually takes about
1578 seconds (26 nm 18 s).

1) 10 20 30 40 50

50.4

50.3

50.2

50. 1
51)0
49•(.)

-(001)
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For your very own rod with constant initial temperature 1(x) = = 100 to
investigate in this manner, let

L = 100 -I— lOp and k = I —1- (0. l)q,

where J) is the largest and (J is the smallest nonzero digit of your student ID number.

1. If the two ends of the rod are both held at temperature zero, then determine
how long (to the nearest second) it will take for the rod’s midpoint temperature
to fall to 50°.

2. If the end .v = L of the rod is insulated, but the end .v = 0 is held at tem
perature zero, then the temperature function u ft , t) is given by the series in
Problem 24 of this section. Determine how long it will be until the maximum
temperature anywhere in the rod is 500.

Vibrating Strings and the One-Dimensional Wave Equation

Although Fourier systematized the method of separation of variables, trigono
metric series solutions of partial differential equations had appeared earlier in
eighteenth-century investigations of vibrating strings by Euler, d’Alembert, and
Daniel Bernoulli. To derive the partial differential equation that models the vi
brations of a string, we begin with a flexible uniform string with linear density p
(in grams per centimeter or slugs per foot) stretched under a tension of T (dynes
or pounds) between the lixed points x 0 and x = L. Suppose that, as the string
vibrates in the vy—plane around its equilibrium position, each point moves parallel
to the v—axis, so we can denote by v(.v , t) the displacement at Ii met of the point x of

— the string. Then, for any fixed value of t, the shape of the stri ng at time t is the curve

/J_
v = v(x, t). We assume also that the deflection of the string remains so slight that
the approximation sin P tan P = vr, 1) is quite accurate (Fig. 9.6. 1). Finally,

— -. 9 we assume that in addition to the internal forces of tension acting tangentially to the
string, it is.cted on by an external vertical force with linear density F fv) in such
units as dynes per centimeter or pounds per foot.

We want to apply Newton’s second law F = ma to the short segment of string

—

I of mass p Ax corresponding to the interval [x, x —1— AxI, with a being the vertical
acceleration i, (, t ) of its midpoint. Reading the vertical components of the Force
shown in Fi. 9.61, we et

FIGURE 9.6.1. Forces oii a short
segment of the vibrating string.

(p x) y (T, 1) T’ smn( + 0) — T smO + F() Ax

Tvf + Ax, t) Tvjx. I) + F()x,

so clivis ion by A.v yields

— )‘(XH-AX,t)—V(X, t) —

p,(x. 1) T + F fv).

We now take liniits in this equation as Ax — 0, so T — x (because lies in th

interval [x, x -I— x1 with fixed left endpoint .x). Then the two sides of the equation
approach the two sides of the partial differential eqUation

T—- - Ff)
dt- dx-
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that describes the vertical vibrations of a flexible string with constant linear density
p and tension T under the influence of an external vertical force with linear density
F (x).

If we set
T

(2)
p

and set FCv) 0 in Eq. (I), we get the oiie-dimensional wave equation

= a-_-- (3)
Bt2

that models the/’e vibrations of a uniform flexible string.
The fixed ends of the string at the points x = 0 and x = L on the x-axis

coirespond to the eiulpom I ()fl(htioflS

y(0,t)=v(L.t)=0. (4)

Our intuition about the physics of the situation suggests that the motion of the string
will be determined if we specify both its initial position function

v(x,0)f(x) (0 <x < L) (5)

and its initial velocity function

(0<x<L). (6)

On combining Eqs. (3) through (6), we get the boundary value problem

72
(O<x<L, 1>0); (7a)

y(O,t)=v(L.t)=0, (7b)

)‘(x, 0) f(x) (0 <x < L), (7c)

v1 (x, 0) g(x) (0 <x < L) (7d)

for the displacement function y(x, t) of a freely vibrating string with fixed ends,
initial position fe), and initial velocity g(x).

Solution by Separation of Variables

Like the heat equation, the wave equation in (7a) is linear: Any linear combination
of two solutions is again a solution. Another similarity is that the endpoint condi
tions in (7b) are homogeneous. Unfortunately, the conditions in both (7c) and (7d)
are nonhomogeneous; we must deal with two nonhomogeneous boundary condi
tions.

As we described in Section 9.5, the method of separation of variables involves
superposition of solutions satisfying the homogeneous conditions to obtain a solu
tion that also satisfles a single nonhomogeneous boundary condition. To adapt the
technique to the situation at hand, we adopt the “divide and conquer” strategy of
splitting the problem in (7) into the following two separate boundary value prob
lems, each involving only a single nonhomogeneous boundary condition:



Chapter 9 Fourier Series Methods

and

tLltiOfl of

Problem A Probleni 13

f’ = (l, ,
=

v(0. 1) = ‘(L. 1) =0. v(0,t) = v(L. 1) = Ii.

v(.v, 0) f(x(, iCy. 0) = 0,

v,(.v, 0) = 0. i (.v, 0) =

If we can separately lind a solution (x, 1) of Problem A and a solution Vji(.’, 1)

of Problem B. then their sum vCv, 1) = vi, (x, I) -I— ‘B(-. I) will be a solution of the

original problem in (7), because

‘(.vj)) =YAC’, 0) H- vj(x,O) [Cv) H- 0 = 1(v)

, Cv, 0) = {.1A), Cv, 0) H- )Cv, 0) = 0 H- (x) = g(v).

So let us attack Problem A with the method of separation of variables. Substi

v(x,t) XCv)T(I) (8)

in y, = u2v yields XT” = u2K’7’ where (as before) we write K” for X”(x) and

T” for ‘T”(t). Therefore,

X’
(9)

X a2T

The functions X”/X of x and [‘‘ki27 of t can agree for all .v and I only if each is

equal to the same constant. Consequently, we may conclude that

v,, 1,,
— = = —A (10)
X o2T

for sonic constant ?,.: the minus sign is inserted here merely to facilitate recognition

of the eigenvalue problem in (13). Thus our partial dilierential equation separates

into the two ordinary differential equations

K”H-AK=O, (II)

T’—)-AaT =0. (12)

The endpoint conditions

v(0. I) = K(O)T(!) 0. v(L.t) = X(L)T(i) = 0

require that K (0) = X(L) = 0 if T (I) is nontrivial. Hence XC) must satisfy the

flOW familiar eigenvalue problem

X”-(-)X=O, X(O)=X(L)=0. (13)

As in Eqs. (23) and (24) of Section 9.5, the eigenvalues of Ibis problem are (lie

numbers

A,, = —--, ,i=1.2.3 ... (14)

632
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and the eigenfunction associated with k,, is

X,,= sin n = 1.2 (15)

Now we turn to Eq. (1 2). The honogeneous initial condition

v, (.v ,0) = X(x)T’(O) = 0

I rnphes that T( 0) 0. Therefore, the solution 7(1) associated with the eigenvalue
=n2r2/L2 niust satisfy the conditions

222

T, = 0, T,(0) = 0. (16)

The general solution of the differential equation in (1 6) is

071(11 IZJT Cit
7,(t) = A,,cos

— —1- B,, sin—. (17)

Its derivative

ii jru 1’ nr ol 07(01
7,(t) = — —A,,sin-—-——- -f- Bcos

sati sties the condition 7(O) 0 if B 0. Thus a nontrivial solution of (16) is

nr ot
7(t) = cos——. (18)

‘We combine the results in Eqs. (15) and (18) to obtain the infinite sequence of
podiict functions

nyrul I12TX
= cos

———

sin
—--—

(19)

= I 2 Each of these building block functions satisfies both the wave
equation v,, (rv, and the honiogeneuus boundary conditions in Problem A. By

superposition we set the infinite series

07(01 nrx
v,,(x. 1) A,,X,, (x)T,(t) A,, cos sin (20)

,i=I

It remains only to choose the coefficients {A} to satisfy the nonhoniogeneous
boundary condition

vCv.0) = sin f(x) (21)

for 0 < x < L. But this will be the Fourier sine series of f(x) on jO, Lj provided

that we choose

2 L

A,, =

— f Jf sin —i— d. (22)



Thus we see naHy that a formal series solution of Problem A is

nrti1
v4Cv. 1) = iti ——,

with the coeflicients (A,} computed using Eq. (22). Note that the series in (23)
is obtained from the Fourier sine series of f(x) ‘imply b’ inserting the factor
cos(nrrat/L) in the nth term. Note also that this term has (circular) frequency

= irra/L.

Example 1

Example 2

It follows iiiirnediately that the solution of the boundary value problem

(0<x<, t>0)
lIt2 dx2

v(O, t) = v(r. 1) = 0,

v(x, 0) = sin3x = sin.v — sin3v,

),(X0) = 0,

for which L = n and a 2, is

vCt.t)=1cos2t sins — cos 61 sn3x.

The reason is that we are given explicitly the Fourier sine series of f(s) with A i =

.

A3 = —.andA,, Cotherwise.

A plucked string Figure 9.6,2 shows the initial position [unction /(x) for a

stretched sting (of length L) that is set in motion by moving its midpoints = L/2
aside the distance bL and then releasing it from rest at time I = 0. The corre
sponding boundary value problem is

Solution The uth Fourier sine coeffcierit of f(s) is

2 L

A
=

.[c)sin_T_clx

it follows that

2 1L/2 2 1
U

4bL IiT
A,, = —-—---- sin —

n-rr- -

1. 11315
b(L—x)sin —dx;

L
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(23)

=1(v)

FIGURE 9.6.2. The initial
position of the plucked string of
Example 2.

y,1 = av,. (0< x < L, 1>0);

v(0, i) = (L, 1) = 0,

‘(x,0) = f(.v).
v,(x.0) = 0,

where f(.v) = bx forO .v L/2 and [(x) = b(L — x) for L/2 x L. Find

v(x, t).



9.6 Vibrating Strings and the One-Dimensional Wave Equation 635

Hence Eq. (23) yields the formal series sohition

4/L I - mr oTto! nyrx
v(x. I)

= --——>2—sin—----- cos —

- Tt2 n 2 L L
=

4bL (‘ TrOt r..v I 37rcit 3irx
=—--lcos—------sin—-——--cos---------—sin-—-----—-+---;. (24)

yr-v L L -i- L L /
a

Music

Numerous familiar musical instruments employ vibrating strings to generate the
sounds they produce. When a string vibrates with a given frequency, vibrations at
this frequency are transmitted through the air—in the form of periodic variations in
air density called sound waves—to the ear of the listener, For example, niicldle C
is a lone svith a frequency of approximately 256 Hz. When several tones are heard

snnultaneously, the combination is perceived as hannoriious if the ratios of their
Frequencies are nearly ratios of small whole numbers; otherwise many perceive the

combinations as dissonant.
Ihe series in Eq. (23) represents the notion of a string as a superposition of

infinitely many vibrations with different frequencies. The nth term

ohm t ozrv
A,cos sin

L L

rep resents a vibration with frequency

w ii jra/L n [7
= — = =

— / — (l-lz). (25)
2r 2yr 2Lyp

The lowest of these fteqLleflcies,

= 1 (Hz). (26)
2L ,

is called the fundamental frequency, and it is ordinarily predominant in the sound
we hear. The irecuency v = n v1 of the iith overtone or harmonic is an integral
multiple of i’I, and this is why the sound of a single vibrating string is harmonious
rather than dissonant.

Note in Eq. (26) that the fundamental frequency v1 is proportional to /T and
inversely propoilional to L and to Thus we can double this frequency—arid
hence get a fundamental tone one octave higher—either by halving the length L
or by quadrupling the tension F. The initial conditions do ijof affect r1 ; instead.
they determine the coefficients in (23) and hence the extent to which the higher
harmonics contnhute to the sound produced. Therefore the initial conditions affect
the thubre. or overall frequency mixture, rather than the fundamental freciuencv.
(Technical lv this is tine only for relatively small displacements of the string; if you
strike a piano key rather forcefully you can detect a slight and brief initial deviation
From the usual frequency of the note.)

According to one (rather simplistic) theory of hearing, the loudness of the
sound produced by a vibrating string is proportional to its total (kinetic plus poten
tial) energy, which is given by

E=f [P()2+T()2]d. (27)
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reached. But then v(x, 0) = X(x) ‘T(O) = 0 implies that T (0) = 0. so instead of
16) we have

£11 117(1
+

L2
,(L 1,(0) =0. (ii)

From Eq. (17) we see that a nontrivial sohition of (31) is

Ii :Tat
(32)

L

The resulting formal power series solution is therefore of the form

nirat nrx
vnCv, 1) = B,, sin sin —,

(33)

SO WC want to choose the coelhci enis { B,, } so that

- ,zra irrx
y, (v.0)

= Z sin —i-— = gCv), (3-1-)

Thus we want B,, lirci/L lobe the Fourier sine coefficient I,,, of •i(x) on [0. Li:

fl2T(l 2 1L
nrzx

B,, — = b, = — I ç’ (.v) sin dx.
L LJ{) L

Hence we choose

2 1L

B,
—

g(x) sin— clx (35)
111T(1 J0 L

in order for VB(x, 1) in (33) 10 he a formal series solution oF Problem B—and thus
for (x, I) = ‘A (s , 1) —I— vnCv, I) to he a fornial series solution of our original
boundary value prob1cn in Eqs. (7a)—(7d).

Example 3 Consider a sting on a guitar lying crosswise in the back of a pickup truck that at

time t = 0 slams into a brick wall with speed I)). Then (x) u, so

2 r’- nr.v 2a’,L
B,, =
-

v sin dx = [I — (— I)”]
him j L ,i—r—o

Hence the series in (33) gives

4v0L I . mt-at . mrr
y(x,t)= — —sin—---—----- sin—.

- L Lodd

If we differentiate the series in (33) 1errnvise with respect tot, we get

.0
IUT.v InTat Iv,(x. ) = Zh,,smn cos — [G(x +uI) + G(x — nih. (,6)
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Problems

where G is the odd period 2L extension ci’ the initial velocity function g(x), Lising
the same device as itt the derivation ofEq. (30). In Problem 15 we ask you to deduce
that

s’(x. t) = — [JI(.v + a!)
--

H (.v — at)],
2a

where the function H (v) is defined to be

M(x)
= f C(s) dc.

(37)

(38)

If. finally, a string has both a nonzero initial position function vCv .0) =

and a nonzero initial velocity function v (x, 0) g(.v ), then we can obtain its dis

placement function by adding the cl’Alenihert solutions of Problems A and B given
in Eqs. (30) and (37), respectively. Hence the vibrations of this string with general

initial condi tions are described by

vC, 1) = [F(x H- at) H- — nfl] + [R(x H- ci!) + HL — (it)], (39)
2 -U

a superposition of four waves moving along thc v-axis ‘with speed ci. two moving to

the left and two to the right.

‘e the houiida iv value prob/enis in Peal? 1(0 IS I tliioiig h I ft.

• = 4v, 0 < x < jr, I > 0; (0,1) v(sr, I) 0,

v(x, 0) = sin2x, t(x. 0) = 0

• Yri =v,0<.v< 1,t> 0:y(0.!) = v(l,1) = 0.
v(x, 0) j1 sinr,v

—

sin 3zrx, y, (v.0) = 0

• 4v,, = 0< c < sr, I > 0: r(0. i) = v(sr, 1) 0,

v(x. 0) = v, (.v, 0) = sins

-tv, = vi,, 0 < .v < 2.1 > 0; s(0. 1) v(2. t) = 0.

vC. 0) = sin rs cos rx, y(x, 0) ()

• v,, =25s’,0 < ,v < 3,t > 0;v(O•t) = v(3,i) = 0,

yCv. 0) = sin rx. (x. 0) = 10 sin 2rx

• s,=l00v.0<,v<7r.t>O;v(f,1)=vCr,I)=O,
vc. 0) = x(r — .v), v, (x, 0) = 0

• y,,=l00y,,.0<v<I,t>O:’(0,t)=?’(l,1)=O,
iCr. 0) = 0, V1 (v, 0) =

i,, = 4s’,,, 0 < x < sr, I > 0; y(0, I) = v(7r, I) = 0,

vC, 0) = sin.v, v,(x, 0) = 1

• = 4v,,, 0 < .v < 1, t > 0; v(0, I) = v(l, I) = 0,

vCi, 0) = 0, v, (.v, 0) = x(l —

= 25s’,, 0 < x < sr, I > 0; vOL 1) = v(, t) = 0,

vf. 0) = v,Cv. 0) =
5fl .v

• Suppose that a string 2 ft long weighs oz and is sub

jected to a tension of 32 lb. Find the fundamental he—
quency with which it vibrates and the velocity with which

the vibration waves travel along it.

Shorx that the amplitude of the oscillations of the midpoint

of the string 01 Example 3 is

/ L L
‘

4i’5L I i0L

- 1

tf the string is the string of Prohleni I 1 and the impact
speeLl of the pickup truck is 60 mi/h, show that this am—
plitucle is approx iniately lift

13. Suppose that the function FLU) IS twice differentiable for
alt x. Use the chain rule to verify that [lie functions

iC’, i) = iCy —I- a!) and yv. t) F(x —rh)

satisfy the equation ,,

14. Given the differentiable odd period 2L function iCy),
show di at the function

i’Cv, 1) = IFfy at) H- F(x — at)]

satisties the conditions i’(O, 1) = v(L, I) = 0, vfv, 0) =

iCy), and ‘,Cv. 0) = 0.

15. If y(x. 0) 0. then Eq. (36) implies (why’?) that

vc.t)=[G(.v+ar)drfC(x_ar)dr.

Make appropriate substitutions in these integrals to derive

Ecis (37) and (38).
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16. (a) Show that the substitutions u = x + at and v .v — at
transform the equation v, a2v, into the equation

Yr = 0. (b) Conclude that every solution of v,,

is of the form

vf, 1) = FC H- at) H- G( — at).

which represents two waves traveling in opposite diicc
tions. each with speed a.

17. Suppose that

iITat ,iJrx
v(.v. I) = ArCOS — sin

1
L L

Square the derivatives v, and v, and then integrate
termwise—applying the orthogonality of the sine and co
sine functions—to verify that

E =

- f (pv + Tv)dx = i_1 Zn2A.

18. Consider a stretched string, initially at rest: its end at
x = 0 is fixed, but its end at .v = L is partially Free—it

is allowed to slide without fdction along the vertical line
x = L. The corresponding boundary value problem is

V1 = (rV, (0 < .v < L. I > 0):

y(0. 7) = v,(L. 1) 0.

Lv, 0) = f(x).

v,(x, 0) = 0.

Separate the variables and use the odd half-multiple sine
series of f(v), as in Problem 24 of Section 9.5, to derive
the solution

ily1(it -

v(v. 1) = 1, cos — sin
2L 2L

I, uid

2 I’ iiar.v
=

— I f(x) sin dx.
L j 2L

Probleiiis 19 and 20 rIca! wit/i the iiln-ation.c o/a sIrinr under
the influence of the rloioniaid force F(x) = —p, of grar
itv. According to Eq. (1), its disp!aceinentfiini’twii .ativ/ic’a the
partial rli/j’rential equation

02v 1)21

— g
di- cLv

ii’itli endpoint coiiilitioiis s’(O, I) = v( L . 1) = 0.

19. Suppose first that the string hangs in a stationary position.

so that v = v(x) and v,, = 0. and hence its differential
equation of motion takes the simple form wv = g. De
rive the stationary solution

20. Now suppose that the string is released from rest in equi

libri uin: consequently the initial conditions are y(_v, 0) =

0 and v, (v.0) = 0. Define

r(x. 1) v(v. t) —

where Lv) is the stationary solution of Problem 19. De
duce From Eq. (40) that r(x. 1) satisfies the boundary
value problem

it

v(0.t)= i’(L.i) = 0.

Conclude from Eqs. (22) and (23) that

naTal nJr.v
yfu. 1) — i(x) = LA,, cos — sin

where the coefficients A ,,J are the Fourier sine coeffi

cients of f(x) = —(v). Final lv, explain why ii follows
that the string oscillates between the positions v = 0 and
v

21. For a string vibrating in air with resistance proportional to

velocity, the boundary value problem is

= FV, — 2/n’,:

“tO.i) v(L, I) = 0.

‘(x, 0) fLy).

yr (2, 0) = 0.

Assume that t) < Ii < ara/L. (ti) Substitute

iCr, I) = XCv)T(t)

in (41) to obtain the eqUations

and

K” -f- AX = 0. X(0) = X(L) 0 (42)

T’ H- 21, T’ H- rAT = 0, T’(O) 0. 43

(b) The eigenvalues and eigenfunctions of (42) are

ii2r2 nary
A, = — and K, (x) = sin

L

(as usual). Show that the general solution with 3.
0 T 2/L2 of the differential eclualion in (43) is

(40) T(t) = e (A,, cos ia,! H- B,, sin cvi)

where 0),, 5/f21i2/L25Zji: < nara/L. (c) Show
that J’ (0) = 0 implies that B,, = hAfl/ca,, and hence that

to with in a constant run ltip1icalie coefficient,

= £,ht cos (cv,,! — a,,)

where a,, = tan
— (li/wy, ). (d) Finally, conclude that

nary
= e c’,,cos(w,,t—ce,,) sin—.

(41)

where

vLv) = Lv) = — L).
2a-
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2 1L irrv
C, = I f (.v) i n dx.

L J5 L

From this formula we see that the air reci stance has three
main effects: exponential damping of amplitudes, de

creased frequencies a,, < ,era/L. and the introduction
of the phase delay angles a,,.

22. Rework Problem 21 as Ibilows: Firsl substitute v(r. 1) =

u (.v. t) in Eq. 141) aHd then show that the boundary

value problem for r(x, I) is

0,, = cit),, +

v(0.i) = v(L.t) =0.

v(x.0) =

v, (x. 0) = hf(x).

Next show that the substitution t’(x, /) = Xcv) T(t) leads
to the equations

X” + AX = 0. K(0)= X(L) = 0,

Proceed in this manner to derive the solution v(x. I) given

in part (d) of Problem 21.

9.6 Application

The .vnapsl.’ots in Fig. 9.6.4 han’ viiecev ore pasiflons of a ti—

I’ratint’ .irriny ii’iili length L = ir and a = 1 (so its period of
oscjf/atjoi is 2r ). The string i.s initial/v at rest tnt/i fLuid end
points. and (ft lulls’ 1 0 ii LI Set ill iflOtiOfl 111111 111111(11 p05111011

/UiUtiOli

/(x) = 2sin’x = I —cos2x. (44)

23. The most interesting snapshot is the one in Fig. 9,6.4(eL
where it appears that the string exhibits a momentary “flat

spot’ at the instant t = ur/4. Indeed, apply the cFAlcnthert
lornuila in (30 (to prove that the string’s position hinction

yCe. t) satisfies the condition

/ 7r\ 3rr
v I x. — I = I for — s —.

.\ 4/ 4_ —4

23. (a) Show that the position function J(.t) defined in
Eq. (44) has inflection points lf”(x) = 1)1 at .r = 7r/4
and at .v = 3/4. (b) In snapshots (a)—(e) of Fig. 9.6.4 it
appears that these two inflection points may remain fixed

dui—ing some initial portion of the string’s vibration . In

deed, apply the d’Aleniher formula to show that if either
x = r1 or .v = 3r/4, then v(.v,t) I forfi i r1.

Vibrating-String I n’estigations

of the vibrating-string problem, and apply it to investigate gtaphically the motions

that result from a variety of different initial positions of the string. Maple and MAT—

LAB versions of this imupletnenlation are included in the applications manual that

accontpanies this text.
To plot the snapshots shown in Fig. 9.6.4, we began with the initial position

function

f[K] 2*3in[x]2

To define the odd period 2n extension F(x) of f(x). we need the Function sCv) that
shifts the point .v by an integral multiple of into the interval [0, xr.

Block[{k}, k — Floor[N[xfPiI];
If[EvenQ[k], (* k is even *)

(* then *) Npc — k*Pi],
(* else *) ![x — k’t’Pi — Pi]]]

Then the desired odd extension is defined by

F’[c.] : If[s[x] > 0, (* then *) £[s[z]],

(* else *)—f[—s[x]]]

Finally, the d’Alenibert solution in (I) is

where

T” + (Am2 — h2)T = 0.

Here we describe a .‘vtailie,,iatictt implementation of the cl’Alemnbert solution

v (.i, 1) [F (.v + ai) + FCc — cii)] (I)

G[x, t.] ( F[x + t + F[x - tJ )/2


