Functions as Infinitely Long Column Vectors

e The Switch from Fixed Vectors to Functions

e Solutions to Differential Equations are Graphs

e Numerical analysis, Graphs and Fixed Vectors

e Trouble Storing Sampled Functions

e Column Vectors with Infinitely Many Components

e From Sampled Data to Infinitely Long Column Vectors

e The Algebra of Infinitely Long Column Vectors

The Switch from Fixed Vectors to Functions as Vectors

Linear algebra presents fixed vectors as replacements for arrows used in physics and engi-
neering courses. Then the reader is asked to make another leap: treat a solution y(x) of a
differential equation as a vector 3.

This short account of how to effect the switch was written in response to the following
Rookie question, which gets quickly to the heart of the matter.

If a solution y () of a DE is a vector, then why can’t I burst it into components as

U1

Yn

Solutions to Differential Equations are Graphs

The default storage system used for applications involving ordinary or partial differential
equations is a function space. The data item packages for differential equations are their
solutions, which are functions.

A wider viewpoint is that a function y () is a package 4, which when burst to reveal the
contents shows an algebraic equation like y = 1 4+ @2, or a graphic with implied graph
window, or a photo or scanned JPG of a graphic. In all these examples:

Solutions to differential equations are not column vectors of numbers.

Numerical analysis, Graphs and Fixed Vectors

An alternative view, adopted by researchers in numerical solutions of differential equations,
is that a solution is a table of numbers, consisting of pairs of & and y values.

These researchers might view a function as being a fixed vector. Their unique intuitive
viewpoint is that a function is a graph and a graph is determined by so many dots, which
are practically obtained by sampling the function ¢y () at a reasonably dense set of x-
values. The approximation is

y(x1)
Graph of y(x) = ¢y = y(mz)
y(zn)
where x4, ..., @, are the samples and y(x;), ..., y(x,) are the sampled values of

function y.

Trouble Storing Sampled Functions

The trouble with the approximation

y(e’131)
Graph of y(x) &~ 7§ = y(i’:z)

is that two different functions may need different sampling rates to properly represent their
graphic. The result is that the two functions might need data storage systems of different
dimensions, e.g., f needs its sampled values in R** and g needs its sampled values in

R4OO

The absence of a universal fixed vector storage system for sampled functions explains the
appeal of a storage system like the set of all functions.

Column Vectors with Infinitely Many Components

Novices suggest a work-around for the lack of a universal numerical data storage system for
sampled functions: develop a theory of column vectors with infinitely many components. It
may help you to think of any function f as an infinitely long column vector, with one entry
f () for each possible sample x, e.g.,

f=1Ff (a:) level x

It is not clear how to order or address the entries of such a column vector: at algebraic
stages it hinders. Can computers store infinitely long column vectors? The easiest path
through the algebra is to deal exactly with functions and function notation.

From Sampled Data to Infinitely Long Column Vectors

There 1s something attractive about the change from sampled approximations to a single
column vector with infinite extent:

f(xzy) :
f =~ f(wz) — | f(=x) level x
I (xy) :

The thinking behind the /evel x annotation is that & stands for one of the infinite possibili-
ties for an invented sample. Alternatively, with a rich set of invented samples @4, ..., T,
value f () equals approximately f(x;), where @ is closest to some sample ;.

The Algebra of Infinitely Long Column Vectors

How to add and scalar multiply infinitely long column vectors?

While the correct way to proceed is with function notation, here’s what you can use for
definitions in your own work, to develop intuition.

f‘|‘ g= f(w) + g(w) = | f(x) —|— g(x) | level

cf = c f(:ac) = cf:(:L*) level @

The thinking here is numerical, that the column vectors represent sampled data. In the
function notation of Dirichlet, (f + g)(x) = f(x) 4+ g(x). Observe that his idea
appears directly from the previous display by not bothering to write parentheses or vertical
dots.

