\qquad

Differential Equations 2280
 Midterm Exam 1

Exam Date: Friday, 27 February 2015 at 12:50pm

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count $3 / 4$, answers count $1 / 4$.

1. (Quadrature Equations)

(a) $[40 \%]$ Solve $y^{\prime}=\frac{3+x^{2}}{2+x}$.
(b) $[60 \%]$ Find the position $x(t)$ from the velocity model $\frac{d}{d t}\left(e^{t} v(t)\right)=2 e^{2 t}, v(0)=5$ and the position model $\frac{d x}{d t}=v(t), x(2)=2$.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad

2. (Classification of Equations)

The differential equation $y^{\prime}=f(x, y)$ is defined to be separable provided $f(x, y)=$ $F(x) G(y)$ for some functions F and G.
(a) $[40 \%]$ The equation $y^{\prime}+x(y+3)=y e^{x}+3 x$ is separable. Provide formulas for $F(x)$ and $G(y)$.
(b) $[60 \%]$ Apply partial derivative tests to show that $y^{\prime}=x+y$ is linear but not separable. Supply all details.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.
3. (Solve a Separable Equation)

Given $(5 y+10) y^{\prime}=\left(x e^{-x}+\sin (x) \cos (x)\right)\left(y^{2}+3 y-4\right)$.
Find a non-equilibrium solution in implicit form.
To save time, do not solve for y explicitly and do not solve for equilibrium solutions.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

4. (Linear Equations)

(a) $[60 \%]$ Solve the linear model $2 x^{\prime}(t)=-64+\frac{10}{3 t+2} x(t), x(0)=32$. Show all integrating factor steps.
(b) $[20 \%]$ Solve the homogeneous equation $\frac{d y}{d x}-(\cos (x)) y=0$.
(c) $[20 \%]$ Solve $5 \frac{d y}{d x}-7 y=10$ using the superposition principle $y=y_{h}+y_{p}$. Expected are answers for y_{h} and y_{p}.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad

5. (Stability)

Assume an autonomous equation $x^{\prime}(t)=f(x(t))$. Draw a phase diagram with at least 12 threaded curves, using the phase line diagram given below. Add these labels as appropriate: funnel, spout, node [neither spout nor funnel], stable, unstable.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name. \qquad

6. (ch3)

Using Euler's theorem on atoms and the characteristic equation for higher order constantcoefficient differential equations, solve (a), (b), (c).
(a) [40\%] Find a differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ which has particular solutions $-5 e^{-x}+x e^{-x}, 10 e^{-x}+x e^{-x}$.
(b) [30\%] Given characteristic equation $r(r-2)\left(r^{3}+4 r\right)^{4}\left(r^{2}+2 r+17\right)=0$, solve the differential equation.
(c) [30\%] Given $m x^{\prime \prime}(t)+c x^{\prime}(t)+k x(t)=0$, which represents an unforced damped springmass system. Assume $m=4, c=4, k=129$. Classify the answer as over-damped, critically damped or under-damped. Illustrate in a drawing the assignment of physical constants m, c, k and the initial conditions $x(0)=0, x^{\prime}(0)=1$.

Use this page to start your solution. Attach extra pages as needed, then staple.

Name.

7. (ch3)

Determine for $y^{(4)}+y^{(2)}=x+2 e^{x}+3 \sin x$ the corrected trial solution for y_{p} according to the method of undetermined coefficients. Do not evaluate the undetermined coefficients! The trial solution should be the one with fewest Euler solution atoms.

Use this page to start your solution. Attach extra pages as needed, then staple.

