11.8 Second-order Systems

A model problem for second order systems is the system of three masses coupled by springs studied in section 11.1, equation (6):

(1)
$$\begin{array}{rcl} m_1 x_1''(t) &=& -k_1 x_1(t) + k_2 [x_2(t) - x_1(t)], \\ m_2 x_2''(t) &=& -k_2 [x_2(t) - x_1(t)] + k_3 [x_3(t) - x_2(t)], \\ m_3 x_3''(t) &=& -k_3 [x_3(t) - x_2(t)] - k_4 x_3(t). \end{array}$$

Figure 21. Three masses connected by springs. The masses slide along a frictionless horizontal surface.

In vector-matrix form, this system is a second order system

$$M\mathbf{x}''(t) = K\mathbf{x}(t)$$

where the **displacement x**, mass matrix M and stiffness matrix K are defined by the formulas

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ M = \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix}, \ K = \begin{pmatrix} -k_1 - k_2 & k_2 & 0 \\ k_2 & -k_2 - k_3 & k_3 \\ 0 & k_3 & -k_3 - k_4 \end{pmatrix}.$$

Because M is invertible, the system can always be written as

$$\mathbf{x}'' = A\mathbf{x}, \quad A = M^{-1}K.$$

Converting $\mathbf{x}'' = A\mathbf{x}$ to $\mathbf{u}' = C\mathbf{u}$

Given a second order $n \times n$ system $\mathbf{x}'' = A\mathbf{x}$, define the variable \mathbf{u} and the $2n \times 2n$ block matrix C as follows.

(2)
$$\mathbf{u} = \begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix}, \quad C = \begin{pmatrix} 0 & | I \\ \hline A & | 0 \end{pmatrix}.$$

Then each solution \mathbf{x} of the second order system $\mathbf{x}'' = A\mathbf{x}$ produces a corresponding solution \mathbf{u} of the first order system $\mathbf{u}' = C\mathbf{u}$. Similarly, each solution \mathbf{u} of $\mathbf{u}' = C\mathbf{u}$ gives a solution \mathbf{x} of $\mathbf{x}'' = A\mathbf{x}$ by the formula $\mathbf{x} = \operatorname{diag}(I, 0)\mathbf{u}$.

Characteristic Equation for $\mathbf{x}'' = A\mathbf{x}$

The characteristic equation for the $n \times n$ second order system $\mathbf{x}'' = A\mathbf{x}$ can be obtained from the corresponding $2n \times 2n$ first order system $\mathbf{u}' = C\mathbf{u}$. We will prove the following identity.

Theorem 31 (Characteristic Equation)

Let $\mathbf{x}'' = A\mathbf{x}$ be given with $A \ n \times n$ constant and let $\mathbf{u}' = C\mathbf{u}$ be its corresponding first order system, using (2). Then

(3)
$$\det(C - \lambda I) = (-1)^n \det(A - \lambda^2 I).$$

Proof: The method of proof is to verify the product formula

$$\left(\begin{array}{c|c} -\lambda I & I \\ \hline A & -\lambda I \end{array}\right) \left(\begin{array}{c|c} I & 0 \\ \hline \lambda I & I \end{array}\right) = \left(\begin{array}{c|c} 0 & I \\ \hline A - \lambda^2 I & -\lambda I \end{array}\right).$$

Then the determinant product formula applies to give

(4)
$$\det(C - \lambda I) \det\left(\frac{I \mid 0}{\lambda I \mid I}\right) = \det\left(\frac{0 \mid I}{A - \lambda^2 I \mid -\lambda I}\right).$$

Cofactor expansion is applied to give the two identities

$$\det\left(\begin{array}{c|c} I & 0 \\ \hline \lambda I & I \end{array}\right) = 1, \quad \det\left(\begin{array}{c|c} 0 & I \\ \hline A - \lambda^2 I & -\lambda I \end{array}\right) = (-1)^n \det(A - \lambda^2 I).$$

Then (4) implies (3). The proof is complete.

Solving $\mathbf{u}' = C\mathbf{u}$ and $\mathbf{x}'' = A\mathbf{x}$

Consider the $n \times n$ second order system $\mathbf{x}'' = A\mathbf{x}$ and its corresponding $2n \times 2n$ first order system

(5)
$$\mathbf{u}' = C\mathbf{u}, \quad C = \left(\begin{array}{c|c} 0 & I \\ \hline A & 0 \end{array}\right), \quad \mathbf{u} = \left(\begin{array}{c|c} \mathbf{x} \\ \mathbf{x}' \end{array}\right).$$

Theorem 32 (Eigenanalysis of A and C)

Let A be a given $n \times n$ constant matrix and define the $2n \times 2n$ block matrix C by (5). Then

(6)
$$(C - \lambda I)\begin{pmatrix} \mathbf{w} \\ \mathbf{z} \end{pmatrix} = \mathbf{0}$$
 if and only if $\begin{cases} A\mathbf{w} = \lambda^2 \mathbf{w}, \\ \mathbf{z} = \lambda \mathbf{w}. \end{cases}$

Proof: The result is obtained by block multiplication, because

$$C - \lambda I = \left(\begin{array}{c|c} -\lambda I & I \\ \hline A & -\lambda I \end{array} \right).$$

Theorem 33 (General Solutions of u' = Cu and x'' = Ax)

Let A be a given $n \times n$ constant matrix and define the $2n \times 2n$ block matrix C by (5). Assume C has eigenpairs $\{(\lambda_j, \mathbf{y}_j)\}_{j=1}^{2n}$ and $\mathbf{y}_1, \ldots, \mathbf{y}_{2n}$ are independent. Let I denote the $n \times n$ identity and define $\mathbf{w}_j = \operatorname{diag}(I, 0)\mathbf{y}_j$, $j = 1, \ldots, 2n$. Then $\mathbf{u}' = C\mathbf{u}$ and $\mathbf{x}'' = A\mathbf{x}$ have general solutions

Proof: Let $\mathbf{x}_j(t) = e^{\lambda_j t} \mathbf{w}_j$, j = 1, ..., 2n. Then \mathbf{x}_j is a solution of $\mathbf{x}'' = A\mathbf{x}$, because $\mathbf{x}''_j(t) = e^{\lambda_j t} (\lambda_j)^2 \mathbf{w}_j = A\mathbf{x}_j(t)$, by Theorem 32. To be verified is the independence of the solutions $\{\mathbf{x}_j\}_{j=1}^{2n}$. Let $\mathbf{z}_j = \lambda_j \mathbf{w}_j$ and apply Theorem 32 to write $\mathbf{y}_j = \begin{pmatrix} \mathbf{w}_j \\ \mathbf{z}_j \end{pmatrix}$, $A\mathbf{w}_j = \lambda_j^2 \mathbf{w}_j$. Suppose constants a_1, \ldots, a_{2n} are given such that $\sum_{j=1}^{2n} a_k \mathbf{x}_j = 0$. Differentiate this relation to give $\sum_{j=1}^{2n} a_k e^{\lambda_j t} \mathbf{z}_j = 0$ for all t. Set t = 0 in the last summation and combine to obtain $\sum_{j=1}^{2n} a_k \mathbf{y}_j = 0$. Independence of $\mathbf{y}_1, \ldots, \mathbf{y}_{2n}$ implies that $a_1 = \cdots = a_{2n} = 0$. The proof is complete.

Eigenanalysis when A has Negative Eigenvalues. If all eigenvalues μ of A are negative or zero, then, for some $\omega \ge 0$, eigenvalue μ is related to an eigenvalue λ of C by the relation $\mu = -\omega^2 = \lambda^2$. Then $\lambda = \pm \omega i$ and $\omega = \sqrt{-\mu}$. Consider an eigenpair $(-\omega^2, \mathbf{v})$ of the real $n \times n$ matrix A with $\omega \ge 0$ and let

$$u(t) = \begin{cases} c_1 \cos \omega t + c_2 \sin \omega t & \omega > 0, \\ c_1 + c_2 t & \omega = 0. \end{cases}$$

Then $u''(t) = -\omega^2 u(t)$ (both sides are zero for $\omega = 0$). It follows that $\mathbf{x}(t) = u(t)\mathbf{v}$ satisfies $\mathbf{x}''(t) = -\omega^2 \mathbf{x}(t)$ and $A\mathbf{x}(t) = u(t)A\mathbf{v} = -\omega^2 \mathbf{x}(t)$. Therefore, $\mathbf{x}(t) = u(t)\mathbf{v}$ satisfies $\mathbf{x}''(t) = A\mathbf{x}(t)$.

Theorem 34 (Eigenanalysis Solution of x'' = Ax)

Let the $n \times n$ real matrix A have eigenpairs $\{(\mu_j, \mathbf{v}_j)\}_{j=1}^n$. Assume $\mu_j = -\omega_j^2$ with $\omega_j \ge 0, j = 1, \ldots, n$. Assume that $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent. Then the general solution of $\mathbf{x}''(t) = A\mathbf{x}(t)$ is given in terms of 2n arbitrary constants $a_1, \ldots, a_n, b_1, \ldots, b_n$ by the formula

(7)
$$\mathbf{x}(t) = \sum_{j=1}^{n} \left(a_j \cos \omega_j t + b_j \frac{\sin \omega_j t}{\omega_j} \right) \mathbf{v}_j$$

In this expression, we use the limit convention

$$\frac{\sin \omega t}{\omega}\Big|_{\omega=0} = t.$$

Proof: The text preceding the theorem and superposition establish that $\mathbf{x}(t)$ is a solution. It only remains to prove that it is the general solution, meaning that the arbitrary constants can be assigned to allow any possible initial conditions $\mathbf{x}(0) = \mathbf{x}_0, \mathbf{x}'(0) = \mathbf{y}_0$. Define the constants uniquely by the relations

$$\mathbf{x}_0 = \sum_{j=1}^n a_j \mathbf{v}_j, \mathbf{y}_0 = \sum_{j=1}^n b_j \mathbf{v}_j,$$

which is possible by the assumed independence of the vectors $\{\mathbf{v}_j\}_{j=1}^n$. Then (7) implies $\mathbf{x}(0) = \sum_{j=1}^n a_j \mathbf{v}_j = \mathbf{x}_0$ and $\mathbf{x}'(0) = \sum_{j=1}^n b_j \mathbf{v}_j = \mathbf{y}_0$. The proof is complete.