11.8 Second-order Systems

A model problem for second order systems is the system of three masses coupled by springs studied in section 11.1, equation (6):

$$
\begin{align*}
m_{1} x_{1}^{\prime \prime}(t) & =-k_{1} x_{1}(t)+k_{2}\left[x_{2}(t)-x_{1}(t)\right], \\
m_{2} x_{2}^{\prime \prime}(t) & =-k_{2}\left[x_{2}(t)-x_{1}(t)\right]+k_{3}\left[x_{3}(t)-x_{2}(t)\right], \tag{1}\\
m_{3} x_{3}^{\prime \prime}(t) & =-k_{3}\left[x_{3}(t)-x_{2}(t)\right]-k_{4} x_{3}(t) .
\end{align*}
$$

Figure 21. Three masses connected by springs. The masses slide along a frictionless horizontal surface.

In vector-matrix form, this system is a second order system

$$
M \mathbf{x}^{\prime \prime}(t)=K \mathbf{x}(t)
$$

where the displacement \mathbf{x}, mass matrix M and stiffness matrix K are defined by the formulas

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), M=\left(\begin{array}{ccc}
m_{1} & 0 & 0 \\
0 & m_{2} & 0 \\
0 & 0 & m_{3}
\end{array}\right), K=\left(\begin{array}{ccc}
-k_{1}-k_{2} & k_{2} & 0 \\
k_{2} & -k_{2}-k_{3} & k_{3} \\
0 & k_{3} & -k_{3}-k_{4}
\end{array}\right)
$$

Because M is invertible, the system can always be written as

$$
\mathbf{x}^{\prime \prime}=A \mathbf{x}, \quad A=M^{-1} K
$$

Converting $\mathbf{x}^{\prime \prime}=A \mathbf{x}$ to $\mathbf{u}^{\prime}=C \mathbf{u}$
Given a second order $n \times n$ system $\mathbf{x}^{\prime \prime}=A \mathbf{x}$, define the variable \mathbf{u} and the $2 n \times 2 n$ block matrix C as follows.

$$
\mathbf{u}=\binom{\mathbf{x}}{\mathbf{x}^{\prime}}, \quad C=\left(\begin{array}{c|c}
0 & I \tag{2}\\
\hline A & 0
\end{array}\right) .
$$

Then each solution \mathbf{x} of the second order system $\mathbf{x}^{\prime \prime}=A \mathbf{x}$ produces a corresponding solution \mathbf{u} of the first order system $\mathbf{u}^{\prime}=C \mathbf{u}$. Similarly, each solution \mathbf{u} of $\mathbf{u}^{\prime}=C \mathbf{u}$ gives a solution \mathbf{x} of $\mathbf{x}^{\prime \prime}=A \mathbf{x}$ by the formula $\mathbf{x}=\boldsymbol{\operatorname { d i a g }}(I, 0) \mathbf{u}$.

Characteristic Equation for $\mathrm{x}^{\prime \prime}=A \mathrm{x}$

The characteristic equation for the $n \times n$ second order system $\mathbf{x}^{\prime \prime}=A \mathbf{x}$ can be obtained from the corresponding $2 n \times 2 n$ first order system $\mathbf{u}^{\prime}=$ $C \mathbf{u}$. We will prove the following identity.

Theorem 31 (Characteristic Equation)

Let $\mathbf{x}^{\prime \prime}=A \mathbf{x}$ be given with $A n \times n$ constant and let $\mathbf{u}^{\prime}=C \mathbf{u}$ be its corresponding first order system, using (2). Then

$$
\begin{equation*}
\operatorname{det}(C-\lambda I)=(-1)^{n} \operatorname{det}\left(A-\lambda^{2} I\right) \tag{3}
\end{equation*}
$$

Proof: The method of proof is to verify the product formula

$$
\left(\begin{array}{r|r}
-\lambda I & I \\
\hline A & -\lambda I
\end{array}\right)\left(\begin{array}{r|r}
I & 0 \\
\hline \lambda I & I
\end{array}\right)=\left(\begin{array}{r|r}
0 & I \\
\hline A-\lambda^{2} I & -\lambda I
\end{array}\right) .
$$

Then the determinant product formula applies to give

$$
\operatorname{det}(C-\lambda I) \operatorname{det}\left(\begin{array}{r|r}
I & 0 \tag{4}\\
\hline \lambda I & I
\end{array}\right)=\operatorname{det}\left(\begin{array}{r|r}
0 & I \\
\hline A-\lambda^{2} I & -\lambda I
\end{array}\right) .
$$

Cofactor expansion is applied to give the two identities

$$
\operatorname{det}\left(\begin{array}{r|r}
I & 0 \\
\hline \lambda I & I
\end{array}\right)=1, \quad \operatorname{det}\left(\begin{array}{r|r}
0 & I \\
\hline A-\lambda^{2} I & -\lambda I
\end{array}\right)=(-1)^{n} \operatorname{det}\left(A-\lambda^{2} I\right) .
$$

Then (4) implies (3). The proof is complete.

Solving $\mathbf{u}^{\prime}=C \mathbf{u}$ and $\mathbf{x}^{\prime \prime}=A \mathbf{x}$

Consider the $n \times n$ second order system $\mathbf{x}^{\prime \prime}=A \mathbf{x}$ and its corresponding $2 n \times 2 n$ first order system

$$
\mathbf{u}^{\prime}=C \mathbf{u}, \quad C=\left(\begin{array}{c|c}
0 & I \tag{5}\\
\hline A & 0
\end{array}\right), \quad \mathbf{u}=\binom{\mathbf{x}}{\mathbf{x}^{\prime}} .
$$

Theorem 32 (Eigenanalysis of A and C)
Let A be a given $n \times n$ constant matrix and define the $2 n \times 2 n$ block matrix C by (5). Then

$$
(C-\lambda I)\binom{\mathbf{w}}{\mathbf{z}}=\mathbf{0} \text { if and only if }\left\{\begin{align*}
A \mathbf{w} & =\lambda^{2} \mathbf{w}, \tag{6}\\
\mathbf{z} & =\lambda \mathbf{w} .
\end{align*}\right.
$$

Proof: The result is obtained by block multiplication, because

$$
C-\lambda I=\left(\begin{array}{c|c}
-\lambda I & I \\
\hline A & -\lambda I
\end{array}\right) .
$$

Theorem 33 (General Solutions of $\mathbf{u}^{\prime}=C \mathbf{u}$ and $\mathrm{x}^{\prime \prime}=A \mathrm{x}$)
Let A be a given $n \times n$ constant matrix and define the $2 n \times 2 n$ block matrix C by (5). Assume C has eigenpairs $\left\{\left(\lambda_{j}, \mathbf{y}_{j}\right)\right\}_{j=1}^{2 n}$ and $\mathbf{y}_{1}, \ldots, \mathbf{y}_{2 n}$ are independent. Let I denote the $n \times n$ identity and define $\mathbf{w}_{j}=\operatorname{diag}(I, 0) \mathbf{y}_{j}$, $j=1, \ldots, 2 n$. Then $\mathbf{u}^{\prime}=C \mathbf{u}$ and $\mathbf{x}^{\prime \prime}=A \mathbf{x}$ have general solutions

$$
\begin{array}{lr}
\mathbf{u}(t)=c_{1} e^{\lambda_{1} t} \mathbf{y}_{1}+\cdots+c_{2 n} e^{\lambda_{2 n} t} \mathbf{y}_{2 n} & (2 n \times 1), \\
\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{w}_{1}+\cdots+c_{2 n} e^{\lambda_{2 n} t} \mathbf{w}_{2 n} & (n \times 1) .
\end{array}
$$

Proof: Let $\mathbf{x}_{j}(t)=e^{\lambda_{j} t} \mathbf{w}_{j}, j=1, \ldots, 2 n$. Then \mathbf{x}_{j} is a solution of $\mathbf{x}^{\prime \prime}=A \mathbf{x}$, because $\mathbf{x}_{j}^{\prime \prime}(t)=e^{\lambda_{j} t}\left(\lambda_{j}\right)^{2} \mathbf{w}_{j}=A \mathbf{x}_{j}(t)$, by Theorem 32 . To be verified is the independence of the solutions $\left\{\mathbf{x}_{j}\right\}_{j=1}^{2 n}$. Let $\mathbf{z}_{j}=\lambda_{j} \mathbf{w}_{j}$ and apply Theorem 32 to write $\mathbf{y}_{j}=\binom{\mathbf{w}_{j}}{\mathbf{z}_{j}}, A \mathbf{w}_{j}=\lambda_{j}^{2} \mathbf{w}_{j}$. Suppose constants $a_{1}, \ldots, a_{2 n}$ are given such that $\sum_{j=1}^{2 n} a_{k} \mathbf{x}_{j}=0$. Differentiate this relation to give $\sum_{j=1}^{2 n} a_{k} e^{\lambda_{j} t} \mathbf{z}_{j}=0$ for all t. Set $t=0$ in the last summation and combine to obtain $\sum_{j=1}^{2 n} a_{k} \mathbf{y}_{j}=0$. Independence of $\mathbf{y}_{1}, \ldots, \mathbf{y}_{2 n}$ implies that $a_{1}=\cdots=a_{2 n}=0$. The proof is complete.

Eigenanalysis when A has Negative Eigenvalues. If all eigenvalues μ of A are negative or zero, then, for some $\omega \geq 0$, eigenvalue μ is related to an eigenvalue λ of C by the relation $\mu=-\omega^{2}=\lambda^{2}$. Then $\lambda= \pm \omega i$ and $\omega=\sqrt{-\mu}$. Consider an eigenpair $\left(-\omega^{2}, \mathbf{v}\right)$ of the real $n \times n$ matrix A with $\omega \geq 0$ and let

$$
u(t)= \begin{cases}c_{1} \cos \omega t+c_{2} \sin \omega t & \omega>0 \\ c_{1}+c_{2} t & \omega=0\end{cases}
$$

Then $u^{\prime \prime}(t)=-\omega^{2} u(t)$ (both sides are zero for $\omega=0$). It follows that $\mathbf{x}(t)=u(t) \mathbf{v}$ satisfies $\mathbf{x}^{\prime \prime}(t)=-\omega^{2} \mathbf{x}(t)$ and $A \mathbf{x}(t)=u(t) A \mathbf{v}=-\omega^{2} \mathbf{x}(t)$. Therefore, $\mathbf{x}(t)=u(t) \mathbf{v}$ satisfies $\mathbf{x}^{\prime \prime}(t)=A \mathbf{x}(t)$.

Theorem 34 (Eigenanalysis Solution of $\mathbf{x}^{\prime \prime}=A \mathbf{x}$)
Let the $n \times n$ real matrix A have eigenpairs $\left\{\left(\mu_{j}, \mathbf{v}_{j}\right)\right\}_{j=1}^{n}$. Assume $\mu_{j}=-\omega_{j}^{2}$ with $\omega_{j} \geq 0, j=1, \ldots, n$. Assume that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent. Then the general solution of $\mathbf{x}^{\prime \prime}(t)=A \mathbf{x}(t)$ is given in terms of $2 n$ arbitrary constants $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ by the formula

$$
\begin{equation*}
\mathbf{x}(t)=\sum_{j=1}^{n}\left(a_{j} \cos \omega_{j} t+b_{j} \frac{\sin \omega_{j} t}{\omega_{j}}\right) \mathbf{v}_{j} \tag{7}
\end{equation*}
$$

In this expression, we use the limit convention

$$
\left.\frac{\sin \omega t}{\omega}\right|_{\omega=0}=t
$$

Proof: The text preceding the theorem and superposition establish that $\mathbf{x}(t)$ is a solution. It only remains to prove that it is the general solution, meaning that the arbitrary constants can be assigned to allow any possible initial conditions $\mathbf{x}(0)=\mathbf{x}_{0}, \mathbf{x}^{\prime}(0)=\mathbf{y}_{0}$. Define the constants uniquely by the relations

$$
\begin{aligned}
& \mathbf{x}_{0}=\sum_{j=1}^{n} a_{j} \mathbf{v}_{j} \\
& \mathbf{y}_{0}=\sum_{j=1}^{n} b_{j} \mathbf{v}_{j}
\end{aligned}
$$

which is possible by the assumed independence of the vectors $\left\{\mathbf{v}_{j}\right\}_{j=1}^{n}$. Then (7) implies $\mathbf{x}(0)=\sum_{j=1}^{n} a_{j} \mathbf{v}_{j}=\mathbf{x}_{0}$ and $\mathbf{x}^{\prime}(0)=\sum_{j=1}^{n} b_{j} \mathbf{v}_{j}=\mathbf{y}_{0}$. The proof is complete.

