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11.8 Second-order Systems

A model problem for second order systems is the system of three masses
coupled by springs studied in section 11.1, equation (6):

m1x
′′
1(t) = −k1x1(t) + k2[x2(t)− x1(t)],

m2x
′′
2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)],

m3x
′′
3(t) = −k3[x3(t)− x2(t)]− k4x3(t).
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Figure 21. Three masses
connected by springs. The masses
slide along a frictionless horizontal
surface.

In vector-matrix form, this system is a second order system

Mx′′(t) = Kx(t)

where the displacement x, mass matrix M and stiffness matrix K
are defined by the formulas

x=

x1x2
x3

 , M=

m1 0 0
0 m2 0
0 0 m3

 , K=

−k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 .
Because M is invertible, the system can always be written as

x′′ = Ax, A = M−1K.

Converting x′′ = Ax to u′ = Cu

Given a second order n × n system x′′ = Ax, define the variable u and
the 2n× 2n block matrix C as follows.

u =

(
x
x′

)
, C =

(
0 I

A 0

)
.(2)

Then each solution x of the second order system x′′ = Ax produces a
corresponding solution u of the first order system u′ = Cu. Similarly,
each solution u of u′ = Cu gives a solution x of x′′ = Ax by the formula
x = diag(I, 0)u.

Characteristic Equation for x′′ = Ax

The characteristic equation for the n× n second order system x′′ = Ax
can be obtained from the corresponding 2n× 2n first order system u′ =
Cu. We will prove the following identity.
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Theorem 31 (Characteristic Equation)
Let x′′ = Ax be given with A n × n constant and let u′ = Cu be its
corresponding first order system, using (2). Then

det(C − λI) = (−1)n det(A− λ2I).(3)

Proof: The method of proof is to verify the product formula(
−λI I
A −λI

)(
I 0
λI I

)
=

(
0 I

A− λ2I −λI

)
.

Then the determinant product formula applies to give

det(C − λI) det

(
I 0
λI I

)
= det

(
0 I

A− λ2I −λI

)
.(4)

Cofactor expansion is applied to give the two identities

det

(
I 0
λI I

)
= 1, det

(
0 I

A− λ2I −λI

)
= (−1)n det(A− λ2I).

Then (4) implies (3). The proof is complete.

Solving u′ = Cu and x′′ = Ax

Consider the n× n second order system x′′ = Ax and its corresponding
2n× 2n first order system

u′ = Cu, C =

(
0 I

A 0

)
, u =

(
x
x′

)
.(5)

Theorem 32 (Eigenanalysis of A and C)
Let A be a given n×n constant matrix and define the 2n×2n block matrix
C by (5). Then

(C − λI)

(
w
z

)
= 0 if and only if

{
Aw = λ2w,

z = λw.
(6)

Proof: The result is obtained by block multiplication, because

C − λI =

(
−λI I
A −λI

)
.

Theorem 33 (General Solutions of u′ = Cu and x′′ = Ax)
Let A be a given n×n constant matrix and define the 2n×2n block matrix
C by (5). Assume C has eigenpairs {(λj ,yj)}2nj=1 and y1, . . . , y2n are
independent. Let I denote the n×n identity and define wj = diag(I, 0)yj ,
j = 1, . . . , 2n. Then u′ = Cu and x′′ = Ax have general solutions

u(t) = c1e
λ1ty1 + · · ·+ c2ne

λ2nty2n (2n× 1),
x(t) = c1e

λ1tw1 + · · ·+ c2ne
λ2ntw2n (n× 1).
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Proof: Let xj(t) = eλjtwj , j = 1, . . . , 2n. Then xj is a solution of x′′ = Ax,
because x′′

j (t) = eλjt(λj)
2wj = Axj(t), by Theorem 32. To be verified is the

independence of the solutions {xj}2nj=1. Let zj = λjwj and apply Theorem 32

to write yj =

(
wj

zj

)
, Awj = λ2jwj . Suppose constants a1, . . . , a2n are given

such that
∑2n
j=1 akxj = 0. Differentiate this relation to give

∑2n
j=1 ake

λjtzj = 0

for all t. Set t = 0 in the last summation and combine to obtain
∑2n
j=1 akyj = 0.

Independence of y1, . . . , y2n implies that a1 = · · · = a2n = 0. The proof is
complete.

Eigenanalysis when A has Negative Eigenvalues. If all eigen-
values µ of A are negative or zero, then, for some ω ≥ 0, eigenvalue µ
is related to an eigenvalue λ of C by the relation µ = −ω2 = λ2. Then
λ = ±ωi and ω =

√
−µ. Consider an eigenpair (−ω2,v) of the real n×n

matrix A with ω ≥ 0 and let

u(t) =

{
c1 cosωt+ c2 sinωt ω > 0,
c1 + c2t ω = 0.

Then u′′(t) = −ω2u(t) (both sides are zero for ω = 0). It follows that
x(t) = u(t)v satisfies x′′(t) = −ω2x(t) and Ax(t) = u(t)Av = −ω2x(t).
Therefore, x(t) = u(t)v satisfies x′′(t) = Ax(t).

Theorem 34 (Eigenanalysis Solution of x′′ = Ax)
Let the n×n real matrix A have eigenpairs {(µj ,vj)}nj=1. Assume µj = −ω2

j

with ωj ≥ 0, j = 1, . . . , n. Assume that v1, . . . , vn are linearly independent.
Then the general solution of x′′(t) = Ax(t) is given in terms of 2n arbitrary
constants a1, . . . , an, b1, . . . , bn by the formula

x(t) =
n∑
j=1

(
aj cosωjt+ bj

sinωjt

ωj

)
vj(7)

In this expression, we use the limit convention

sinωt

ω

∣∣∣∣
ω=0

= t.

Proof: The text preceding the theorem and superposition establish that x(t) is
a solution. It only remains to prove that it is the general solution, meaning that
the arbitrary constants can be assigned to allow any possible initial conditions
x(0) = x0, x′(0) = y0. Define the constants uniquely by the relations

x0 =
∑n
j=1 ajvj ,

y0 =
∑n
j=1 bjvj ,

which is possible by the assumed independence of the vectors {vj}nj=1. Then

(7) implies x(0) =
∑n
j=1 ajvj = x0 and x′(0) =

∑n
j=1 bjvj = y0. The proof is

complete.


