Classification of Phase Portraits at Equilibria for $\vec{\mathrm{u}}'(t) = \vec{\mathrm{f}}(\vec{\mathrm{u}}(t))$

- Transfer of Local Linearized Phase Portrait
- Transfer of Local Linearized Stability
- How to Classify Linear Equilibria
- Justification of the Classification Method
- Three Examples
 - Spiral-saddle Example
 - Center-saddle Example
 - Node-saddle Example

Transfer of Local Linearized Phase Portrait

THEOREM.

Let $\vec{\mathbf{u}}_0$ be an equilibrium point of the nonlinear dynamical system

$$\vec{\mathrm{u}}'(t) = \vec{\mathrm{f}}(\vec{\mathrm{u}}(t)).$$

Assume the Jacobian of $\vec{\mathbf{f}}(\vec{\mathbf{u}})$ at $\vec{\mathbf{u}} = \vec{\mathbf{u}}_0$ is matrix A and $\vec{\mathbf{u}}'(t) = A\vec{\mathbf{u}}(t)$ has linear classification saddle, node, center or spiral at its equilibrium point (0,0).

Then the nonlinear system $\vec{\mathbf{u}}'(t) = \vec{\mathbf{f}}(\vec{\mathbf{u}}(t))$ at equilibrium point $\vec{\mathbf{u}} = \vec{\mathbf{u}}_0$ has the same classification, with the following exceptions:

If the linear classification at (0,0) for $\vec{\mathbf{u}}'(t) = A\vec{\mathbf{u}}(t)$ is a node or a center, then the nonlinear classification at $\vec{\mathbf{u}} = \vec{\mathbf{u}}_0$ might be a spiral.

The exceptions in terms of roots of the characteristic equation: $\lambda_1 = \lambda_2$ (real equal roots) and $\lambda_1 = \overline{\lambda_2} = bi$ (b > 0, purely complex roots).

Transfer of Local Linearized Stability

THEOREM.

Let $\vec{\mathbf{u}}_0$ be an equilibrium point of the nonlinear dynamical system

$$\vec{\mathrm{u}}'(t) = \vec{\mathrm{f}}(\vec{\mathrm{u}}(t)).$$

Assume the Jacobian of $\vec{f}(\vec{u})$ at $\vec{u} = \vec{u}_0$ is matrix A. Then the nonlinear system $\vec{u}'(t) = \vec{f}(\vec{u}(t))$ at $\vec{u} = \vec{u}_0$ has the same stability as $\vec{u}'(t) = A\vec{u}(t)$ with the following exception:

If the linear classification at (0,0) for $\vec{\mathbf{u}}'(t) = A\vec{\mathbf{u}}(t)$ is a center, then the nonlinear classification at $\vec{\mathbf{u}} = \vec{\mathbf{u}}_0$ might be either stable or unstable.

How to Classify Linear Equilibria

- Assume the linear system is 2×2 , $\vec{\mathbf{u}}' = A\vec{\mathbf{u}}$.
- ullet Compute the roots λ_1 , λ_2 of the characteristic equation of A.
- ullet Find the atoms $A_1(t)$, $A_2(t)$ for these two roots.
- If the atoms have sine and cosine factors, then a rotation is implied and the classification is either a **center** or **spiral**. Pure harmonic atoms [no exponentials] imply a center, otherwise it's a spiral.
- If the atoms are exponentials, then the classification is a non-rotation, a **node** or **saddle**. Take limits of the atoms at $t = \infty$ and also $t = -\infty$. If one limit answer is $A_1 = A_2 = 0$, then it's a node, otherwise it's a saddle.

Justification of the Classification Method

The Cayley-Hamilton-Ziebur theorem implies that the general solution of

$$ec{\mathrm{u}}' = Aec{\mathrm{u}}$$

is the equation

$$ec{\mathrm{u}}(t) = A_1(t)ec{d}_1 + A_2(t)ec{\mathrm{d}}_2$$

where A_1 , A_2 are the atoms corresponding to the roots λ_1 , λ_2 of the characteristic equation of A. Although \vec{d}_1 , \vec{d}_2 are not arbitrary, the classification only depends on the roots and hence only on the atoms. We construct examples of the behavior by choosing \vec{d}_1 , \vec{d}_2 , for example,

$$ec{\mathrm{d}}_1 = \left(egin{array}{c} 1 \ 0 \end{array}
ight), \quad ec{\mathrm{d}}_2 = \left(egin{array}{c} 0 \ 1 \end{array}
ight).$$

If the atoms were $\cos t$, $\sin t$, then the solution by C-H-Z would be $x = \cos t$, $y = \sin t$. Analysis of the trajectory shows a circle, hence we expect a **center** at (0,0). Similar examples can be invented for the other cases of a **spiral**, **saddle**, or **node**, by considering possible pairs of atoms.

Three Examples

Consider the nonlinear systems and selected equilibrium points. The third example has infinitely many equilibria.

$$\begin{array}{lll} \textbf{Spiral-Saddle} & \left\{ \begin{array}{l} x' &= x+y, \\ y' &= 1-x^2. \end{array} \right. & \text{Equilibria } (1,-1), (-1,1) \end{array}$$

$$\textbf{Center-Saddle} & \left\{ \begin{array}{l} x' &= y, \\ y' &= -20x+5x^3. \end{array} \right. & \text{Equilibria } (0,0), (2,0), (-2,0) \end{array}$$

$$\textbf{Node-Saddle} & \left\{ \begin{array}{l} x' &= 3\sin(x)+y, \\ y' &= \sin(x)+2y. \end{array} \right. & \text{Equilibria } (2\pi,0), (\pi,0) \end{array}$$

Spiral-saddle Example

The nonlinear function and Jacobian are

$$ec{\mathrm{f}}(x,y) = \left(egin{array}{c} x+y \ 1-x^2 \end{array}
ight), \quad A(x,y) = \left(egin{array}{c} 1 & 1 \ -2x & 0 \end{array}
ight).$$

Then
$$A(1,-1)=\left(egin{array}{cc}1&1\\-2&0\end{array}
ight)$$
 and $A(-1,1)=\left(egin{array}{cc}1&1\\2&0\end{array}
ight)$.

- The characteristic equations are $\lambda^2 \lambda + 2 = 0$ and $\lambda^2 \lambda 2 = 0$ with roots $\frac{1}{2} \pm \frac{1}{2} \sqrt{7}i$ and 2, -1, respectively.
- The atoms for A(1,-1) are $e^{t/2}\cos(\sqrt{7}t/2)$, $e^{t/2}\sin(\sqrt{7}t/2)$. Rotation implies a center or spiral. No pure harmonics, so it's a spiral. The limit at $t=-\infty$ is zero for both atoms, so it's stable at minus infinity, implying unstable at infinity.
- The atoms for A(-1,1) are e^{2t} , e^{-t} . No rotation implies a node or saddle. Neither the limit at infinity nor at minus infinity gives zero, so it's a saddle.

Center-saddle Example

The nonlinear function and Jacobian are

$$ec{\mathrm{f}}(x,y) = \left(egin{array}{c} y \ -20x+5x^3 \end{array}
ight), \quad A(x,y) = \left(egin{array}{c} 0 & 1 \ -20+15x^2 & 0 \end{array}
ight).$$

Then
$$A(0,0)=\left(egin{array}{cc} 0 & 1 \ -20 & 0 \end{array}
ight)$$
 and $A(\pm 2,0)=\left(egin{array}{cc} 0 & 1 \ 40 & 0 \end{array}
ight)$.

- The characteristic equations are $\lambda^2 + 20 = 0$ and $\lambda^2 40 = 0$ with roots $\pm \sqrt{20}i$ and $\pm \sqrt{40}$, respectively.
- The atoms for A(0,0) are $\cos(\sqrt{20}t)$, $\sin(\sqrt{20}t)$. Rotation implies a center or spiral. The atoms are pure harmonics, so it's a center. The nonlinear system can be a center or a spiral and either stable or unstable. The issue is decided by a computer algebra system to be a center.
- The atoms for $A(\pm 2, 0)$ are e^{bt} , e^{-bt} , where $b = \sqrt{40}$. No rotation implies a node or saddle. Neither the limit at infinity nor at minus infinity gives zero, so it's a saddle.

Node-saddle Example

The nonlinear function and Jacobian are

$$ec{\mathrm{f}}(x,y) = \left(egin{array}{c} 3\sin x + y \ \sin x + 2y \end{array}
ight), \quad A(x,y) = \left(egin{array}{c} 3\cos x & 1 \ \cos x & 2 \end{array}
ight).$$

Then
$$A(2\pi,0)=\left(egin{array}{cc} 3&1\ 1&2 \end{array}
ight)$$
 and $A(\pi,0)=\left(egin{array}{cc} -3&1\ -1&2 \end{array}
ight)$.

- The characteristic equations are $\lambda^2-5\lambda+5=0$ and $\lambda^2+\lambda-5=0$ with roots $\frac{1}{2}(5\pm\sqrt{5})=3.6,1.38$ and $\frac{1}{2}(-1\pm\sqrt{21})=1.79,-2.79$, respectively.
- The atoms for $A(2\pi, 0)$ are e^{at} , e^{bt} with a > 0, b > 0. No rotation implies a node or saddle. The atoms limit to zero at $t = -\infty$, so one end is stable, which eliminates the saddle. It's a node, unstable at infinity.
- The atoms for $A(\pi, 0)$ are e^{at} , e^{bt} , where a > 0 and b < 0. No rotation implies a node or saddle. Neither the limit at infinity nor at minus infinity gives zero, so it's a saddle.
- The two classifications and their stability transfers to the nonlinear system. The only case when a node does not automatically transfer is the case of equal roots.