
Chapter 5

Second Order Linear

Equations

Studied here are linear differential equations of the second order

a(x)y′′ + b(x)y′ + c(x)y = f(x).(1)

Important to the theory is continuity of the coefficients a(x), b(x), c(x)
and the non-homogeneous term f(x), also called the forcing term

or the input.

5.1 Linear Constant Equations

Studied is the equation

ay′′ + by′ + cy = 0

where a 6= 0, b and c are constants. An explicit formula for the general
solution is developed. Prerequisites are the quadratic formula, complex
numbers, Cramer’s rule for 2 × 2 linear systems and first order linear
differential equations.

Theorem 1 (Recipe for Constant Equations)
Let a 6= 0, b and c be real constants. Let r1, r2 be the two roots of
ar2 + br + c = 0, real or complex. If complex, then let r1 = r2 = α + iβ
with β > 0. Consider the following three cases, organized by the sign of the
discriminant D = b2 − 4ac:

D > 0 (Real distinct roots) y1 = er1x, y2 = er2x.

D = 0 (Real equal roots) y1 = er1x, y2 = xer1x.

D < 0 (Conjugate roots) y1 = eαx cos(βx), y2 = eαx sin(βx).

Then y1, y2 are two solutions of ay′′ + by′ + cy = 0 and all solutions are
given by y = c1y1 + c2y2, where c1, c2 are arbitrary constants.
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The proof appears on page 193. Examples 1–3, page 191, cover the three
cases.

A general solution is an expression that represents all solutions of the
differential equation. Theorem 1 gives an expression of the form

y = c1y1 + c2y2

where c1 and c2 are arbitrary constants and y1, y2 are special solutions of
the differential equation, determined by the roots of the characteristic

equation ar2 +br+c = 0. The terminology recipe means that the gen-
eral solution can be written out at very high speed with no justification
required.

The initial value problem for ay′′ + by′ + cy = 0 selects the constants
c1, c2 in the general solution y = c1y2 + c2y2 from initial conditions

of the form y(x0) = d1, y′(x0) = d2. In these conditions, x0 is a given
point in −∞ < x < ∞ and d1, d2 are two real numbers.

Theorem 2 (Uniqueness)
Let a 6= 0, b, c, x0, d1 and d2 be constants. The initial value problem
ay′′ + by′ + cy = 0, y(x0) = d1, y′(x0) = d2 has one and only one solution,
found from the general solution y = c1y1 + c2y2 by applying Cramer’s rule
or the method of elimination.

The proof appears on page 194. For Cramer’s rule details, see Example
4, page 192.

The two theorems taken together give a working rule for solving a linear
constant equation:

To solve ay′′ + by′ + cy = 0, find the roots of the char-

acteristic equation ar2 + br + c = 0 and then apply the

recipe to write down y1, y2. The general solution is then

y = c1y1 + c2y2. If initial conditions are given, then deter-

mine c1, c2 explicitly, otherwise c1, c2 remain arbitrary.

Theorem 3 (Superposition)
Let a 6= 0, b and c be constants. Assume y1, y2 are solutions of ay′′ + by′ +
cy = 0 and c1, c2 are constants. Then y = c1y1 + c2y2 is a solution of
ay′′ + by′ + cy = 0.

A proof appears on page 194. The result is implicitly used in Theorem 1,
in order to show that a general solution satisfies the differential equation.

Recipe Speed. The time taken to write out the general solution
varies among individuals and according to the algebraic complexity of
the characteristic equation. Judge your understanding of the recipe by
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these statistics: most persons can write out the general solution in under
60 seconds. Especially simple equations like y′′ = 0, y′′+y = 0, y′′−y = 0,
y′′ + 2y′ + y = 0, y′′ + 3y′ + 2y = 0 are finished in less than 30 seconds.

Graphics. Computer programs can produce plots for initial value
problems. They cannot plot symbolic solutions containing the ar-
bitrary variables c1, c2 that appear in the general solution.

Recipe Errors. Below in Table 1 are recorded some common but
fatal errors made in writing out the general solution.

Table 1. Errors in Applying the Constant Equation Recipe.

Bad equation For y′′ − y = 0, the correct characteristic equation
is r2 − 1 = 0. Commonly, r2 − r = 0 is written, an
error.

Sign reversal For factored equation (r + 1)(r + 2) = 0, the roots
are r = −1, r = −2. A common error is to claim
r = 1 is a root.

Miscopy signs The equation r2+2r+2 = 0 has complex conjugate
roots α ± βi, where α = −1 and β = 1 (β > 0 is
required). A common error is to miscopy signs on
α and/or β.

Copying ±i The equation r2 + 4 = 0 has roots α ± βi where
α = 0 and β = 2. A common mistake is to report
“solutions” cos(±2ix) and sin(±2ix) – neither ±
nor the complex unit i should be copied.

1 Example (Case 1) Solve y′′ + y′ − 2y = 0.

Solution: The general solution is y = c1e
x+c2e

−2x. Ordering is not important;
an equivalent answer is y = c1e

−2x + c2e
x. The answer will be justified below,

by finding y1, y2 in the recipe.

The characteristic equation r2 + r − 2 = 0 is found formally by replacements
y′′ → r2, y′ → r and y → 1 in the differential equation. Formal replacement
reduces errors.

A college algebra method called inverse-FOIL applies to factor r2 + r − 2 = 0
into (r − 1)(r + 2) = 0. The roots are r = 1, r = −2.

Applying case D > 0 of the recipe gives solutions y1 = ex and y2 = e−2x. If the
roots are listed in reverse order, then the form of the answer will change to the
equivalent one reported above.

2 Example (Case 2) Solve 4y′′ + 4y′ + y = 0.
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Solution: The general solution is y = c1e
−x/2 + c2xe−x/2. To justify this

formula, find the characteristic equation 4r2 + 4r + 1 = 0 and factor it by the
inverse-FOIL method or square completion to obtain (2r + 1)2 = 0. The roots
are both −1/2.

Case D = 0 of the recipe gives y1 = e−x/2, y2 = xe−x/2. Then the general
solution is y = c1y1 + c2y2, which completes the verification.

3 Example (Case 3) Solve 4y′′ + 2y′ + y = 0.

Solution: The solution is y = c1e
−x/4 cos(

√
3x/4) + c2e

−x/4 sin(
√

3x/4). This
formula is justified below, by showing that the solutions y1, y2 of the recipe are
given by y1 = e−x/4 cos(

√
3x/4) and y2 = e−x/4 sin(

√
3x/4).

The characteristic equation is 4r2 + 2r + 1 = 0. The roots by the quadratic

formula are

r =
−b ±

√
b2 − 4ac

2a
College algebra formula for the roots of the
quadratic ar2 + br + c = 0.

=
−2 ±

√

22 − (4)(4)(1)

(2)(4)
Substitute a = 4, b = 2, c = 1.

= −1

4
±

√
−1

√
12

8
Simplify. Used

√

(−1)(12) =
√
−1

√
12.

= −1

4
± i

√
3

4
Convert to complex form, i =

√
−1.

The real part of the root is labeled α = −1/4. The two imaginary parts are√
3/4 and −

√
3/4. Only the positive one is labeled, the other being discarded:

β =
√

3/4.

The recipe case D < 0 applies to give solutions y1 = eαx cos(βx) and y2 =
eαx sin(βx). Substitution of α = −1/4 and β =

√
3/4 results in the formulas

y1 = e−x/4 cos(
√

3x/4), y2 = e−x/4 sin(
√

3x/4). The verification is complete.

4 Example (Initial Value Problem) Solve y′′ + y′ − 2y = 0, y(0) = 1,
y′(0) = −2 and graph the solution on 0 ≤ x ≤ 2.

Solution: The solution to the initial value problem is y = e−2x. The graph
appears in Figure 1. Justification and graph construction appear below.

The general solution is y = c1e
x + c2e

−2x, from Example 1. The problem of
finding c1, c2 uses the two equations y(0) = 1, y′(0) = −2 and the general
solution to obtain expanded equations for c1, c2:

e0c1 + e0c2 = 1,
e0c1 − 2e0c2 = −2.

The equations will be solved by the method of elimination. Since e0 = 1,
the equations are subject to simplification. Subtracting them eliminates the
variable c1 to give 3c2 = 3. Therefore, c2 = 1 and back-substitution finds
c1 = 0. Then y = c1e

x + c2e
−2x reduces to y = e−2x.

To graph the solution is a routine application of curve library methods, so no
hand-graphing methods will be discussed. To produce a computer graphic of
the solution, the following code is offered.
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plot(exp(-2*x),x=0..2); Maple V

Plot[{exp(-2 x)},{x,0,2}]; Mathematica

plot [0:2] exp(-2*x) Gnuplot

x=0:0.05:2; plot(x,exp(-2*x)) Matlab and Scilab

1

0
20 Figure 1. Exponential solution y = e−2x.

Proof of Theorem 1: To show that y1 and y2 are solutions is left to the
exercises. For the remainder of the proof, assume y is a solution of ay′′ + by′ +
cy = 0. It has to be shown that y = c1y1 + c2y2 for some real constants c1, c2.

Algebra background. In college algebra it is shown that the polynomial
ar2 + br + c can be written in terms of its roots r1, r2 as a(r − r1)(r − r2). In
particular, the sum and product of the roots satisfy the relations b/a = −r1−r2

and c/a = r1r2.

Case D > 0. The equation ay′′ + by′ + cy = 0 can be re-written in the form
y′′ − (r1 + r2)y

′ + r1r2y = 0 due to the college algebra relations for the sum
and product of the roots of a quadratic equation. The equation “factors” into
(y′−r2y)′−r1(y

′−r2y) = 0 which suggests the substitution u = y′−r2y. Then
ay′′ + by′ + cy = 0 is equivalent to the first order system

u′ − r1u = 0,
y′ − r2y = u.

Growth-decay theory, page 3, applied to the first equation gives u = u0e
r1x.

The second equation y′ − r2y = u is then solved by the integrating factor
method, as in Example 11, page 75. This gives y = y0e

r2x + u0e
r1x/(r1 − r2).

Therefore, any possible solution y has the form c1e
r1x + c2e

r2x for some c1, c2.
This completes the proof of the case D > 0.

Case D = 0. The details follow the case D > 0, except that y′ − r2y = u
has a different solution, y = y0e

r1x + u0xer1x (exponential factors er1x and
er2x cancel because r1 = r2). Therefore, any possible solution y has the form
c1e

r1x + c2xer1x for some c1, c2. This completes the proof of the case D = 0.

Case D < 0. The equation ay′′ + by′ + cy = 0 can be re-written in the form
y′′ − (r1 + r2)y

′ + r1r2y = 0 as in the case D > 0, even though y is real and
the roots are complex. The substitution u = y′ − r2y gives the same equivalent
system as in the case D > 0. The solutions are symbolically the same, u =
u0e

r1x and y = y0e
r1x + u0e

r1x/(r1 − r2). Therefore, any possible real solution
y has the form C1e

r1x + C2e
r2x for some possibly complex C1, C2. Taking the

real part of both sides of this equation gives y = c1e
αx cos(βx) + c2e

αx sin(βx)
for some real constants c1, c2, as follows:

y = Re(y) Because y is real.

= Re(C1e
r1x + C2e

r2x) Substitute.

= eαx Re(C1e
iβx + C2e

−iβx) Use eαx+iβx = eαxeiβx.

= eαx(c1 cos(βx) + c2 sin(βx)) Where c1 = Re(C1 + C2) and c2 =
Im(C2 − C1) are real. Applied eiβ =
cosβ + i sinβ.
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This completes the proof of the case D < 0.

Proof of Theorem 2: The left sides of the two requirements y(x0) = d1,
y′(x0) = d2 are expanded using the relation y = c1y1 + c2y2 to obtain the
following system of equations for the unknowns c1, c2:

y1(x0)c1 + y2(x0)c2 = d1,
y′

1(x0)c1 + y′

2(x0)c2 = d2.

If the determinant of coefficients

∆ = y1(x0)y
′

2(x0) − y′

1(x0)y2(x0)

is nonzero, then Cramer’s rule says that the solutions c1, c2 are given as quo-
tients

c1 =
d1y

′

2(x0) − d2y2(x0)

∆
, c2 =

y1(x0)d2 − y′

1(x0)d1

∆
.

The organization of the proof is made from the three cases of the recipe, using
x instead of x0, to simplify notation. The issue of a unique solution has now
reduced to verification of ∆ 6= 0, in the three cases.

Case D > 0. Then

∆ = er1xr2e
r2x − r1e

r1xer2x Substitute for y1, y2.

= (r2 − r1)e
r1x+r2x Simplify.

6= 0 Because r1 6= r2.

Case D = 0. Then

∆ = er1x(er1x + r1xer1x) − r1e
r1xxer1x Substitute for y1, y2.

= e2r1x Simplify.

6= 0

Case D < 0. Then r1 = r2 = α + iβ and

∆ = βe2αx(cos2 βx + sin2 βx) Cancel αe2αx sin(βx) cos(βx).

= βe2αx Trigonometric identity.

6= 0 Because β > 0.

In applications, the more efficient method of elimination is used to find c1, c2.
In some references, it is called Gaussian elimination.

Proof of Theorem 3: The three terms of the differential equation are com-
puted using the expression y = c1y1 + c2y2:

Term 1: cy = cc1y1 + cc2y2

Term 2: by′ = b(c1y1 + c2y2)
′

= bc1y
′

1 + bc2y
′

2

Term 3: ay′′ = a(c1y1 + c2y2)
′′

= ac1y
′′

1 + ac2y
′′

2

The left side LHS of the differential equation is the sum of the three terms. It
is simplified as follows:
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LHS = c1[ay′′

1 + by′

1 + cy1] Add terms 1,2 and 3,

+ c2[ay′′

2 + by′

2 + cy2] then collect on c1, c2.

= c1[0] + c2[0] Both y1, y2 satisfy ay′′ + by′ + cy = 0.

= RHS The left and right sides match.

Exercises 5.1

Recipe General Solution. Apply the
recipe for constant equations, Theo-
rem 1, page 189, to write out the gen-
eral solution. Model the solution after
Examples 1–3, page 191.

1. y′′ = 0

2. 3y′′ = 0

3. y′′ + y′ = 0

4. 3y′′ + y′ = 0

5. y′′ + 3y′ + 2y = 0

6. y′′ − 3y′ + 2y = 0

7. y′′ − y′ − 2y = 0

8. y′′ − 2y′ − 3y = 0

9. y′′ + y = 0

10. y′′ + 4y = 0

11. y′′ + 16y = 0

12. y′′ + 8y = 0

13. y′′ + y′ + y = 0

14. y′′ + y′ + 2y = 0

15. y′′ + 2y′ + y = 0

16. y′′ + 4y′ + 4y = 0

17. 3y′′ + y′ + y = 0

18. 9y′′ + y′ + y = 0

19. 5y′′ + 25y′ = 0

20. 25y′′ + y′ = 0

21. (Recipe case 1) Let y1 = er1x,
y2 = er2x. Assume factorization
ar2 + br + c = a(r − r1)(r − r2).
Show that y1, y2 are solutions of
ay′′ + by′ + cy = 0.

22. (Recipe case 2) Let y1 = er1x,
y2 = x er1x. Assume factorization
ar2 + br + c = a(r − r1)(r − r1).
Show that y1, y2 are solutions of
ay′′ + by′ + cy = 0.

23. (Recipe case 3) Let y1 =
eαx cosβx, y2 = eαx sinβx, with
β > 0. Assume factorization ar2+
br + c = a(r−α− iβ)(r−α+ iβ).
Show that y1, y2 are solutions of
ay′′ + by′ + cy = 0.


