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10.4 Matrix Exponential

The problem

x'(t) = Ax(t), x(0) =xo

has a unique solution, according to the Picard-Lindel6f theorem. Solve
the problem n times, when xy equals a column of the identity matrix,
and write wq(t), ..., wy(¢) for the n solutions so obtained. Define the
matrix exponential by packaging these n solutions into a matrix:

e = aug(wi(t),..., wn(t)).

By construction, any possible solution of x’ = Ax can be uniquely ex-
pressed in terms of the matrix exponential e by the formula

x(t) = e'x(0).

Matrix Exponential Identities

Announced here and proved below are various formulae and identities
for the matrix exponential e?:

/
(eAt) = At Columns satisfy x’ = Ax.

¥ =1
BeAt — eAtB

eAteBt — e(A—I—B)t
eAteAs

_ eA(t—i—s)

-1
(eAt) — oAt

e =i ()P 4+ rp(t) Py

At Aot

At ST (A AT
e e + o ( 1)
et = MU 4 teM (A — M\ 1)

“ sin bt
et = e cos bt I + %(A —al)
At _ = gnt”

_ n
n=0

eAt _ P—leJtP

Where 0 is the zero matrix.
If AB = BA.
If AB = BA.

At and As commute.

Equivalently, eAte=4t =T

Putzer's spectral formula.
See page 508.

Ais 2 X 2, A1 # Ao real.
Ais 2 x 2, A\ = \g real.

Ais2x2, M\ :XQZ(I-i—Z'b,
b>0.

Picard series. See page 510.

Jordan form J = PAP L.
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Putzer’s Spectral Formula

The spectral formula of Putzer applies to a system x’ = Ax to find the

general solution, using matrices Py, ..., P, constructed from A and the
eigenvalues A1, ..., A, of A, matrix multiplication, and the solution r(t)
of the first order n x n initial value problem
AN 0 0 -~ 0 O 1
1 X 0 -~ 0 0 0
)= 0 1 A - 00 fr@), r(0)=] .
0 0 0 --- 1 X, 0

The system is solved by first order scalar methods and back-substitution.
We will derive the formula separately for the 2 x 2 case (the one used
most often) and the n x n case.

Putzer’s Spectral Formula for a 2 x 2 matrix A

The general solution of x’ = Ax is given by the formula
x(t) = (ri(t)P1 + r2(t)P2) x(0),
where r1, ro, P, Py are defined as follows.

The eigenvalues r = Ay, As are the two roots of the quadratic equation
det(A —rI) = 0.
Define 2 x 2 matrices P, P, by the formulae
P=1 P=A-X\I
The functions ri(t), r2(t) are defined by the differential system

7"'1 == )\17’1, 7'1(0):1,
Té = Xore+ry, ro(0) =0.

Proof: The Cayley-Hamilton formula (A4 — M\I)(A — X2I) = 0 is valid for
any 2 x 2 matrix A and the two roots r = A1, A2 of the determinant equality
det(A —rI) = 0. The Cayley-Hamilton formula is the same as (4 — \3) P> = 0,
which implies the identity AP> = Ay P;. Compute as follows.

X/(t) = (ri(t) Py + r5(t) P2) x(0)
= (AMri(t) Py + 1m1(t) Py + A2r2(t) P2) x(0)
= (7‘1 (t)A + Aoro (t)Pg) X(O)
= (7‘1 (t)A + 79 (f)APg) X(O)
= A(ri(t)I + r2(t)P2) x(0)
= Ax(t).
This proves that x(t) is a solution. Because ®(t) = r1(t)Py + ro(t) P, satisfies

®(0) = I, then any possible solution of x’ = Ax can be represented by the given
formula. The proof is complete.
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Real Distinct Eigenvalues. Suppose A is 2 x 2 having real distinct
eigenvalues A1, A2 and x(0) is real. Then

At AT
ot o e — €
rL=e 7‘2—7)\1_)\2
and At Aot
1t __ 2
x(t) = [eMT+ 5" (A— \I) ) x(0).
A= A2

The matrix exponential formula for real distinct eigenvalues:

At Aot

e —_—
eAt _ e}\ltl_i_

— (A= )\{I]).
Al—A2( M)

Real Equal Eigenvalues. Suppose A is 2 x 2 having real equal

eigenvalues A\; = Ay and x(0) is real. Then r; = eM?, ry = teM? and

x(t) = (e’\ltI + teMi(A - )\1[)) x(0).
The matrix exponential formula for real equal eigenvalues:

et = MU 4 teMt (A — M\ ).

Complex Eigenvalues. Suppose A is 2 x 2 having complex eigen-
values A\; = a + bi with b > 0 and Ay = a — bi. If x(0) is real, then a
real solution is obtained by taking the real part of the spectral formula.
This formula is formally identical to the case of real distinct eigenvalues.
Then

Re(x(t)) = (Re(ry(£)] + Re(ra(t)(A — M I))) x(0)
(A= (a+t z’b)[))) x(0)

= (Re(e(‘”ib)t)l + Re(e“tsm—bt

o Sin bt

= (e“t cosbtI + e (A— CLI))) x(0)

The matrix exponential formula for complex conjugate eigenvalues:

sin bt

eAl = et <cos bt I + (A— aI))) .

How to Remember Putzer’s Formula for a 2 x 2 Matrix A.
The expressions

e = r ()T + ro(t) (A — M),
eMt ¢

A1 — A2

(1 !

ri(t) = eMt, ro(t) =
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are enough to generate all three formulae. The fraction ro(t) is a differ-
ence quotient with limit teMt ag Ny — A1, therefore the formula includes
the case A\; = \p by limiting. If \{ = XAy = a + ib with b > 0, then the
fraction 7o is already real, because it has for z = e*? and w = A; the
form

z—Z _ sinbt

t) = —
ra(t) w— W b

Taking real parts of expression (1) then gives the complex case formula

for et

Putzer’s Spectral Formula for an n x n Matrix A

The general solution of x’ = Ax is given by the formula

x(t) = (ri(t)PL + ro(t) Po + - - - + () P) x(0),

where 71, ro, ..., Ty, P1, P, ..., P, are defined as follows.

The eigenvalues r = Aq,..., A\, are the roots of the polynomial equation
det(A —rI) = 0.

Define n x n matrices Py, ..., P, by the formulae

P1:I, Pk:(A_/\k—ll)Pk—ly k‘:2,...,n.

More succinctly, Py, = H?;f (A—X\;I). The functions ry(t), ..., ry(t) are
defined by the differential system

’r’ll = )\17‘1, T (0) = 1,
Té = ATy + 171, 7’2(0) =0,
= Arn+ra_1, r,(0)=0.

Proof: The Cayley-Hamilton formula (A — A\ I)--- (A — A\, I) = 0 is valid for
any n X n matrix A and the n roots r = A1, ..., A, of the determinant equality
det(A —rI) = 0. Two facts will be used: (1) The Cayley-Hamilton formula
implies AP,, = A\, Py; (2) The definition of Py implies A\ Py + Pyy1 = APy for
1 <k <n-—1. Compute as follows.

X' (t) = (r () Py + -+ 17, (£) P) x(0)
= Z ALTE (t)Pk + Z Tk1Pk> X(O)
k=2

n—1
= (Z Mtk () Pe + () A P + > TkPk+1> x(0)

k=1

7k(t) (A Px + Pry1) + T“n(f))\npn> x(0)
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= (712 ri(t) AP + rn(t)APn> x(0)

k=1
(6] A (znj rk(t)Pk> x(0)
= Ax(t).

k=1
Details: Differentiate the formula for x(t). Use the differential equa-
tions for r1,...,ry. Split off the last term from the first sum, then re-index
the last sum. Combine the two sums. Use the recursion for P, and
the Cayley-Hamilton formula (A — A\, I)P, = 0. @ Factor out A on the left.

Apply the definition of x(t).

This proves that x(t) is a solution. Because ®(t) = >")'_, 7x(t) Py satisfies
®(0) = I, then any possible solution of x' = Ax can be so represented. The
proof is complete.

Proofs of Matrix Exponential Properties

/
Verify (eAt) — Ae™. Let xo denote a column of the identity matrix. Define
x(t) = e'xg. Then
(")'x0 = x(t)
= Ax(t)
= Aedtx.

Because this identity holds for all columns of the identity matrix, then (e4*)" and
Ae”t have identical columns, hence we have proved the identity (eAt)l = Ae”t.

Verify AB = BA implies Be* = ¢**B. Define wi(t) = eA*Bw, and
wo(t) = Bettwy. Calculate wi(t) = Awi(t) and wh(t) = BAettw, =
ABetwq = Aws(t), due to BA = AB. Because wy(0) = wa(0) = wy, then the
uniqueness assertion of the Picard-Lindelof theorem implies that wy () = wa(t).
Because wg is any vector, then eA*B = BeA*. The proof is complete.

Verify eAteBt = e(ATB) | Let xo be a column of the identity matrix. Define
x(t) = eMePlxg and y(t) = e+ P)x;. We must show that x(t) = y(t) for
all t. Define u(t) = eP'xy. We will apply the result e*B = BeAt, valid for
BA = AB. The details:

X(t) = (e*u(t))
Aetu(t) + eAtu’(t)
Ax(t) + eAtBu(t)
= Ax(t) + Beu(t)
— (A+B)Xx().

We also know that y'(t) = (A + B)y(¢) and since x(0) = y(0) = %o, then the
Picard-Lindel6f theorem implies that x(t) = y(¢) for all t. This completes the
proof.
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Verify ete?® = ¢A(49) | Let ¢ be a variable and consider s fixed. Define
x(t) = eAtet*xq and y(t) = eAt+)x;. Then x(0) = y(0) and both satisfy the
differential equation u’(t) = Au(t). By the uniqueness in the Picard-Lindel6f
theorem, x(t) = y(t), which implies eAte?* = e+ The proof is complete.

o
tTL
Verify et = E A"—'. The idea of the proof is to apply Picard iteration.
n!
n=0

By definition, the columns of e4* are vector solutions w(t), ..., w,(t) whose

values at ¢ = 0 are the corresponding columns of the n x n identity matrix.
According to the theory of Picard iterates, a particular iterate is defined by

t
YMNQZYW+/fWMﬂW7nZQ
0

The vector yo equals some column of the identity matrix. The Picard iterates
can be found explicitly, as follows.

vi(t) = yo+ [y Ayodr
= (I +At)yo,
y2(t) = yo+ f, Ayi(r)dr
= yo+ [y A(I+ At)yodr
= (I+At+ A%%/2)yo,
yat) = (I+At+A2§+---+A"%)yo.

The Picard-Lindel6f theorem implies that for yo = column k of the identity
matrix,
lim yo(t) = we(b).

n—oo

This being valid for each index k, then the columns of the matrix sum
N
> A
m!
m=0

converge as N — oo to wy(t), ..., wyu(t). This implies the matrix identity

_ n
et = E A ol

n=0

The proof is complete.

Theorem 12 (Special Formulas for )

ed'ag(’\l""’)‘”)t = diag (e)‘lt, e ,e’\"t) Real or complex constants
Al A

( a b)t
. b a :eat< cos bt smbt) Real a. b.

—sinbt cos bt
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Theorem 13 (Computing ¢’ for J Triangular)

If J is an upper triangular matrix, then a column u(t) of e’t can be computed
by solving the system u’(¢) = Ju(t), u(0) = v, where v is the correspond-
ing column of the identity matrix. This problem can always be solved by
first-order scalar methods of growth-decay theory and the integrating factor
method.

Theorem 14 (Block Diagonal Matrix)
If A=diag(By,...,By) and each of By, ..., By is a square matrix, then

e = diag (eBlt, ... ,eBkt) )



