10.4 Matrix Exponential

The problem

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

has a unique solution, according to the Picard-Lindelöf theorem. Solve the problem n times, when \mathbf{x}_{0} equals a column of the identity matrix, and write $\mathbf{w}_{1}(t), \ldots, \mathbf{w}_{n}(t)$ for the n solutions so obtained. Define the matrix exponential by packaging these n solutions into a matrix:

$$
e^{A t} \equiv \operatorname{aug}\left(\mathbf{w}_{1}(t), \ldots, \mathbf{w}_{n}(t)\right)
$$

By construction, any possible solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ can be uniquely expressed in terms of the matrix exponential $e^{A t}$ by the formula

$$
\mathbf{x}(t)=e^{A t} \mathbf{x}(0)
$$

Matrix Exponential Identities

Announced here and proved below are various formulae and identities for the matrix exponential $e^{A t}$:

$$
\begin{array}{ll}
\left(e^{A t}\right)^{\prime}=A e^{A t} & \text { Columns satisfy } \mathbf{x}^{\prime}=A \mathbf{x} . \\
e^{\mathbf{0}}=I & \text { Where } \mathbf{0} \text { is the zero matrix. } \\
B e^{A t}=e^{A t} B & \text { If } A B=B A . \\
e^{A t} e^{B t}=e^{(A+B) t} & \text { If } A B=B A . \\
e^{A t} e^{A s}=e^{A(t+s)} & \text { At and } A s \text { commute. } \\
\left(e^{A t}\right)^{-1}=e^{-A t} & \text { Equivalently, } e^{A t} e^{-A t}=I . \\
e^{A t}=r_{1}(t) P_{1}+\cdots+r_{n}(t) P_{n} & \begin{array}{l}
\text { Putzer's spectral formula. } \\
\text { See page 508. }
\end{array} \\
e^{A t}=e^{\lambda_{1} t} I+\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}}\left(A-\lambda_{1} I\right) & A \text { is } 2 \times 2, \lambda_{1} \neq \lambda_{2} \text { real. } \\
e^{A t}=e^{\lambda_{1} t} I+t e^{\lambda_{1} t}\left(A-\lambda_{1} I\right) & A \text { is } 2 \times 2, \lambda_{1}=\lambda_{2} \text { real. } \\
e^{A t}=e^{a t} \cos b t I+\frac{e^{a t} \sin b t}{b}(A-a I) & A \text { is } 2 \times 2, \lambda_{1}=\bar{\lambda}_{2}=a+i b, \\
b>0 . \\
e^{A t}=\sum_{n=0}^{\infty} A^{n} \frac{t^{n}}{n!} & \text { Picard series. See page } 510 . \\
e^{A t}=P^{-1} e^{J t} P & \text { Jordan form } J=P A P^{-1} .
\end{array}
$$

Putzer's Spectral Formula

The spectral formula of Putzer applies to a system $\mathbf{x}^{\prime}=A \mathbf{x}$ to find the general solution, using matrices P_{1}, \ldots, P_{n} constructed from A and the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A, matrix multiplication, and the solution $\mathbf{r}(t)$ of the first order $n \times n$ initial value problem

$$
\mathbf{r}^{\prime}(t)=\left(\begin{array}{cccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 & 0 \\
1 & \lambda_{2} & 0 & \cdots & 0 & 0 \\
0 & 1 & \lambda_{3} & \cdots & 0 & 0 \\
& & & \vdots & & \\
0 & 0 & 0 & \cdots & 1 & \lambda_{n}
\end{array}\right) \mathbf{r}(t), \quad \mathbf{r}(0)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

The system is solved by first order scalar methods and back-substitution. We will derive the formula separately for the 2×2 case (the one used most often) and the $n \times n$ case.

Putzer's Spectral Formula for a 2×2 matrix A

The general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ is given by the formula

$$
\mathbf{x}(t)=\left(r_{1}(t) P_{1}+r_{2}(t) P_{2}\right) \mathbf{x}(0),
$$

where $r_{1}, r_{2}, P_{1}, P_{2}$ are defined as follows.
The eigenvalues $r=\lambda_{1}, \lambda_{2}$ are the two roots of the quadratic equation

$$
\operatorname{det}(A-r I)=0
$$

Define 2×2 matrices P_{1}, P_{2} by the formulae

$$
P_{1}=I, \quad P_{2}=A-\lambda_{1} I .
$$

The functions $r_{1}(t), r_{2}(t)$ are defined by the differential system

$$
\begin{array}{ll}
r_{1}^{\prime}=\lambda_{1} r_{1}, & r_{1}(0)=1, \\
r_{2}^{\prime}=\lambda_{2} r_{2}+r_{1}, & r_{2}(0)=0 .
\end{array}
$$

Proof: The Cayley-Hamilton formula $\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right)=\mathbf{0}$ is valid for any 2×2 matrix A and the two roots $r=\lambda_{1}, \lambda_{2}$ of the determinant equality $\operatorname{det}(A-r I)=0$. The Cayley-Hamilton formula is the same as $\left(A-\lambda_{2}\right) P_{2}=\mathbf{0}$, which implies the identity $A P_{2}=\lambda_{2} P_{2}$. Compute as follows.

$$
\begin{aligned}
\mathbf{x}^{\prime}(t) & =\left(r_{1}^{\prime}(t) P_{1}+r_{2}^{\prime}(t) P_{2}\right) \mathbf{x}(0) \\
& =\left(\lambda_{1} r_{1}(t) P_{1}+r_{1}(t) P_{2}+\lambda_{2} r_{2}(t) P_{2}\right) \mathbf{x}(0) \\
& =\left(r_{1}(t) A+\lambda_{2} r_{2}(t) P_{2}\right) \mathbf{x}(0) \\
& =\left(r_{1}(t) A+r_{2}(t) A P_{2}\right) \mathbf{x}(0) \\
& =A\left(r_{1}(t) I+r_{2}(t) P_{2}\right) \mathbf{x}(0) \\
& =A \mathbf{x}(t) .
\end{aligned}
$$

This proves that $\mathbf{x}(t)$ is a solution. Because $\Phi(t) \equiv r_{1}(t) P_{1}+r_{2}(t) P_{2}$ satisfies $\Phi(0)=I$, then any possible solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ can be represented by the given formula. The proof is complete.

Real Distinct Eigenvalues. Suppose A is 2×2 having real distinct eigenvalues λ_{1}, λ_{2} and $\mathbf{x}(0)$ is real. Then

$$
r_{1}=e^{\lambda_{1} t}, \quad r_{2}=\frac{e^{\lambda_{1} t}-e^{\lambda_{2} T}}{\lambda_{1}-\lambda_{2}}
$$

and

$$
\mathbf{x}(t)=\left(e^{\lambda_{1} t} I+\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}}\left(A-\lambda_{1} I\right)\right) \mathbf{x}(0) .
$$

The matrix exponential formula for real distinct eigenvalues:

$$
e^{A t}=e^{\lambda_{1} t} I+\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}}\left(A-\lambda_{1} I\right) .
$$

Real Equal Eigenvalues. Suppose A is 2×2 having real equal eigenvalues $\lambda_{1}=\lambda_{2}$ and $\mathbf{x}(0)$ is real. Then $r_{1}=e^{\lambda_{1} t}, r_{2}=t e^{\lambda_{1} t}$ and

$$
\mathbf{x}(t)=\left(e^{\lambda_{1} t} I+t e^{\lambda_{1} t}\left(A-\lambda_{1} I\right)\right) \mathbf{x}(0)
$$

The matrix exponential formula for real equal eigenvalues:

$$
e^{A t}=e^{\lambda_{1} t} I+t e^{\lambda_{1} t}\left(A-\lambda_{1} I\right)
$$

Complex Eigenvalues. Suppose A is 2×2 having complex eigenvalues $\lambda_{1}=a+b i$ with $b>0$ and $\lambda_{2}=a-b i$. If $\mathbf{x}(0)$ is real, then a real solution is obtained by taking the real part of the spectral formula. This formula is formally identical to the case of real distinct eigenvalues. Then

$$
\begin{aligned}
\mathcal{R e}(\mathbf{x}(t)) & =\left(\mathcal{R e}\left(r_{1}(t)\right) I+\mathcal{R e}\left(r_{2}(t)\left(A-\lambda_{1} I\right)\right)\right) \mathbf{x}(0) \\
& =\left(\mathcal{R e}\left(e^{(a+i b) t}\right) I+\mathcal{R e}\left(e^{a t} \frac{\sin b t}{b}(A-(a+i b) I)\right)\right) \mathbf{x}(0) \\
& \left.=\left(e^{a t} \cos b t I+e^{a t} \frac{\sin b t}{b}(A-a I)\right)\right) \mathbf{x}(0)
\end{aligned}
$$

The matrix exponential formula for complex conjugate eigenvalues:

$$
\left.e^{A t}=e^{a t}\left(\cos b t I+\frac{\sin b t}{b}(A-a I)\right)\right) .
$$

How to Remember Putzer's Formula for a 2×2 Matrix A. The expressions

$$
\begin{align*}
& e^{A t}=r_{1}(t) I+r_{2}(t)\left(A-\lambda_{1} I\right), \\
& r_{1}(t)=e^{\lambda_{1} t}, \quad r_{2}(t)=\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}} \tag{1}
\end{align*}
$$

are enough to generate all three formulae. The fraction $r_{2}(t)$ is a difference quotient with limit $t e^{\lambda_{1} t}$ as $\lambda_{2} \rightarrow \lambda_{1}$, therefore the formula includes the case $\lambda_{1}=\lambda_{2}$ by limiting. If $\lambda_{1}=\bar{\lambda}_{2}=a+i b$ with $b>0$, then the fraction r_{2} is already real, because it has for $z=e^{\lambda_{1} t}$ and $w=\lambda_{1}$ the form

$$
r_{2}(t)=\frac{z-\bar{z}}{w-\bar{w}}=\frac{\sin b t}{b} .
$$

Taking real parts of expression (1) then gives the complex case formula for $e^{A t}$.

Putzer's Spectral Formula for an $n \times n$ Matrix A

The general solution of $\mathrm{x}^{\prime}=A \mathrm{x}$ is given by the formula

$$
\mathbf{x}(t)=\left(r_{1}(t) P_{1}+r_{2}(t) P_{2}+\cdots+r_{n}(t) P_{n}\right) \mathbf{x}(0),
$$

where $r_{1}, r_{2}, \ldots, r_{n}, P_{1}, P_{2}, \ldots, P_{n}$ are defined as follows.
The eigenvalues $r=\lambda_{1}, \ldots, \lambda_{n}$ are the roots of the polynomial equation

$$
\operatorname{det}(A-r I)=0
$$

Define $n \times n$ matrices P_{1}, \ldots, P_{n} by the formulae

$$
P_{1}=I, \quad P_{k}=\left(A-\lambda_{k-1} I\right) P_{k-1}, \quad k=2, \ldots, n .
$$

More succinctly, $P_{k}=\Pi_{j=1}^{k-1}\left(A-\lambda_{j} I\right)$. The functions $r_{1}(t), \ldots, r_{n}(t)$ are defined by the differential system

$$
\begin{aligned}
r_{1}^{\prime} & =\lambda_{1} r_{1}, & r_{1}(0)=1, \\
r_{2}^{\prime} & =\lambda_{2} r_{2}+r_{1}, & r_{2}(0)=0 \\
& \vdots & \\
r_{n}^{\prime} & =\lambda_{n} r_{n}+r_{n-1}, & r_{n}(0)=0 .
\end{aligned}
$$

Proof: The Cayley-Hamilton formula $\left(A-\lambda_{1} I\right) \cdots\left(A-\lambda_{n} I\right)=\mathbf{0}$ is valid for any $n \times n$ matrix A and the n roots $r=\lambda_{1}, \ldots, \lambda_{n}$ of the determinant equality $\operatorname{det}(A-r I)=0$. Two facts will be used: (1) The Cayley-Hamilton formula implies $A P_{n}=\lambda_{n} P_{n}$; (2) The definition of P_{k} implies $\lambda_{k} P_{k}+P_{k+1}=A P_{k}$ for $1 \leq k \leq n-1$. Compute as follows.

$$
\begin{array}{ll}
\mathbf{1} & \mathbf{x}^{\prime}(t) \\
\mathbf{2} & \\
\hline & =\left(r_{1}^{\prime}(t) P_{1}+\cdots+r_{n}^{\prime}(t) P_{n}\right) \mathbf{x}(0) \\
\mathbf{3} & \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
\mathbf{5} & =\left(\sum_{k=1}^{n-1} r_{k}(t) A P_{k}+r_{n}(t) A P_{n}\right) \mathbf{x}(0) \\
\mathbf{6} & =A\left(\sum_{k=1}^{n} r_{k}(t) P_{k}\right) \mathbf{x}(0) \\
\mathbf{7} & =A \mathbf{x}(t)
\end{array}
$$

Details: 1 Differentiate the formula for $\mathbf{x}(t) .2$ Use the differential equations for $r_{1}, \ldots, r_{n} .3$ Split off the last term from the first sum, then re-index the last sum. 4 Combine the two sums. 5 Use the recursion for P_{k} and the Cayley-Hamilton formula $\left(A-\lambda_{n} I\right) P_{n}=\mathbf{0} . \sqrt[6]{ }$ Factor out A on the left. 7 Apply the definition of $\mathbf{x}(t)$.
This proves that $\mathbf{x}(t)$ is a solution. Because $\Phi(t) \equiv \sum_{k=1}^{n} r_{k}(t) P_{k}$ satisfies $\Phi(0)=I$, then any possible solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ can be so represented. The proof is complete.

Proofs of Matrix Exponential Properties

Verify $\left(e^{A t}\right)^{\prime}=A e^{A t}$. Let \mathbf{x}_{0} denote a column of the identity matrix. Define $\mathbf{x}(t)=e^{A t} \mathbf{x}_{0}$. Then

$$
\begin{aligned}
\left(e^{A t}\right)^{\prime} \mathbf{x}_{0} & =\mathbf{x}^{\prime}(t) \\
& =A \mathbf{x}(t) \\
& =A e^{A t} \mathbf{x}_{0}
\end{aligned}
$$

Because this identity holds for all columns of the identity matrix, then $\left(e^{A t}\right)^{\prime}$ and $A e^{A t}$ have identical columns, hence we have proved the identity $\left(e^{A t}\right)^{\prime}=A e^{A t}$.

Verify $A B=B A$ implies $B e^{A t}=e^{A t} B$. Define $\mathbf{w}_{1}(t)=e^{A t} B \mathbf{w}_{0}$ and $\mathbf{w}_{2}(t)=B e^{A t} \mathbf{w}_{0}$. Calculate $\mathbf{w}_{1}^{\prime}(t)=A \mathbf{w}_{1}(t)$ and $\mathbf{w}_{2}^{\prime}(t)=B A e^{A t} \mathbf{w}_{0}=$ $A B e^{A t} \mathbf{w}_{0}=A \mathbf{w}_{2}(t)$, due to $B A=A B$. Because $\mathbf{w}_{1}(0)=\mathbf{w}_{2}(0)=\mathbf{w}_{0}$, then the uniqueness assertion of the Picard-Lindelöf theorem implies that $\mathbf{w}_{1}(t)=\mathbf{w}_{2}(t)$. Because \mathbf{w}_{0} is any vector, then $e^{A t} B=B e^{A t}$. The proof is complete.

Verify $e^{A t} e^{B t}=e^{(A+B) t}$. Let \mathbf{x}_{0} be a column of the identity matrix. Define $\mathbf{x}(t)=e^{A t} e^{B t} \mathbf{x}_{0}$ and $\mathbf{y}(t)=e^{(A+B) t} \mathbf{x}_{0}$. We must show that $\mathbf{x}(t)=\mathbf{y}(t)$ for all t. Define $\mathbf{u}(t)=e^{B t} \mathbf{x}_{0}$. We will apply the result $e^{A t} B=B e^{A t}$, valid for $B A=A B$. The details:

$$
\begin{aligned}
\mathbf{x}^{\prime}(t) & =\left(e^{A t} \mathbf{u}(t)\right)^{\prime} \\
& =A e^{A t} \mathbf{u}(t)+e^{A t} \mathbf{u}^{\prime}(t) \\
& =A \mathbf{x}(t)+e^{A t} B \mathbf{u}(t) \\
& =A \mathbf{x}(t)+B e^{A t} \mathbf{u}(t) \\
& =(A+B) \mathbf{x}(t)
\end{aligned}
$$

We also know that $\mathbf{y}^{\prime}(t)=(A+B) \mathbf{y}(t)$ and since $\mathbf{x}(0)=\mathbf{y}(0)=\mathbf{x}_{0}$, then the Picard-Lindelöf theorem implies that $\mathbf{x}(t)=\mathbf{y}(t)$ for all t. This completes the proof.

Verify $e^{A t} e^{A s}=e^{A(t+s)}$. Let t be a variable and consider s fixed. Define $\mathbf{x}(t)=e^{A t} e^{A s} \mathbf{x}_{0}$ and $\mathbf{y}(t)=e^{A(t+s)} \mathbf{x}_{0}$. Then $\mathbf{x}(0)=\mathbf{y}(0)$ and both satisfy the differential equation $\mathbf{u}^{\prime}(t)=A \mathbf{u}(t)$. By the uniqueness in the Picard-Lindelöf theorem, $\mathbf{x}(t)=\mathbf{y}(t)$, which implies $e^{A t} e^{A s}=e^{A(t+s)}$. The proof is complete.

Verify $e^{A t}=\sum_{n=0}^{\infty} A^{n} \frac{t^{n}}{n!}$. The idea of the proof is to apply Picard iteration. By definition, the columns of $e^{A t}$ are vector solutions $\mathbf{w}_{1}(t), \ldots, \mathbf{w}_{n}(t)$ whose values at $t=0$ are the corresponding columns of the $n \times n$ identity matrix. According to the theory of Picard iterates, a particular iterate is defined by

$$
\mathbf{y}_{n+1}(t)=\mathbf{y}_{0}+\int_{0}^{t} A \mathbf{y}_{n}(r) d r, \quad n \geq 0 .
$$

The vector \mathbf{y}_{0} equals some column of the identity matrix. The Picard iterates can be found explicitly, as follows.

$$
\begin{aligned}
\mathbf{y}_{1}(t) & =\mathbf{y}_{0}+\int_{0}^{t} A \mathbf{y}_{0} d r \\
& =(I+A t) \mathbf{y}_{0}, \\
\mathbf{y}_{2}(t) & =\mathbf{y}_{0}+\int_{0}^{t} A \mathbf{y}_{1}(r) d r \\
& =\mathbf{y}_{0}+\int_{0}^{t} A(I+A t) \mathbf{y}_{0} d r \\
& =\left(I+A t+A^{2} t^{2} / 2\right) \mathbf{y}_{0}, \\
& \vdots \\
\mathbf{y}_{n}(t) & =\left(I+A t+A^{2} \frac{t^{2}}{2}+\cdots+A^{n} \frac{t^{n}}{n!}\right) \mathbf{y}_{0} .
\end{aligned}
$$

The Picard-Lindelöf theorem implies that for $\mathbf{y}_{0}=$ column k of the identity matrix,

$$
\lim _{n \rightarrow \infty} \mathbf{y}_{n}(t)=\mathbf{w}_{k}(t) .
$$

This being valid for each index k, then the columns of the matrix sum

$$
\sum_{m=0}^{N} A^{m} \frac{t^{m}}{m!}
$$

converge as $N \rightarrow \infty$ to $\mathbf{w}_{1}(t), \ldots, \mathbf{w}_{n}(t)$. This implies the matrix identity

$$
e^{A t}=\sum_{n=0}^{\infty} A^{n} \frac{t^{n}}{n!}
$$

The proof is complete.

Theorem 12 (Special Formulas for $e^{A t}$)

$$
\begin{aligned}
& e^{\boldsymbol{\operatorname { d i a g } (\lambda _ { 1 } , \ldots , \lambda _ { n }) t}=\boldsymbol{\operatorname { d i a g } (e ^ { \lambda _ { 1 } t } , \ldots , e ^ { \lambda _ { n } t })}} \begin{array}{l}
\text { Real or complex constants } \\
\lambda_{1}, \ldots, \lambda_{n} .
\end{array} \\
& e^{\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right) t}=e^{a t}\left(\begin{array}{rr}
\cos b t & \sin b t \\
-\sin b t & \cos b t
\end{array}\right)
\end{aligned} \quad \begin{aligned}
& \text { Real } a, b .
\end{aligned}
$$

Theorem 13 (Computing $e^{J t}$ for J Triangular)
If J is an upper triangular matrix, then a column $\mathbf{u}(t)$ of $e^{J t}$ can be computed by solving the system $\mathbf{u}^{\prime}(t)=J \mathbf{u}(t), \mathbf{u}(0)=\mathbf{v}$, where \mathbf{v} is the corresponding column of the identity matrix. This problem can always be solved by first-order scalar methods of growth-decay theory and the integrating factor method.

Theorem 14 (Block Diagonal Matrix)
If $A=\boldsymbol{\operatorname { d i a g }}\left(B_{1}, \ldots, B_{k}\right)$ and each of B_{1}, \ldots, B_{k} is a square matrix, then

$$
e^{A t}=\boldsymbol{\operatorname { d i a g }}\left(e^{B_{1} t}, \ldots, e^{B_{k} t}\right) .
$$

