10.4 Matrix Exponential

The problem

 $\mathbf{x}'(t) = A\mathbf{x}(t), \quad \mathbf{x}(0) = \mathbf{x}_0$

has a unique solution, according to the Picard-Lindelöf theorem. Solve the problem n times, when \mathbf{x}_0 equals a column of the identity matrix, and write $\mathbf{w}_1(t), \ldots, \mathbf{w}_n(t)$ for the n solutions so obtained. Define the **matrix exponential** by packaging these n solutions into a matrix:

$$e^{At} \equiv \mathbf{aug}(\mathbf{w}_1(t), \dots, \mathbf{w}_n(t)).$$

By construction, any possible solution of $\mathbf{x}' = A\mathbf{x}$ can be uniquely expressed in terms of the matrix exponential e^{At} by the formula

$$\mathbf{x}(t) = e^{At}\mathbf{x}(0).$$

Matrix Exponential Identities

Announced here and proved below are various formulae and identities for the matrix exponential e^{At} :

$$\begin{split} & \left(e^{At}\right)' = Ae^{At} & \text{Columns satisfy } \mathbf{x}' = A\mathbf{x}. \\ & e^{\mathbf{0}} = I & \text{Where } \mathbf{0} \text{ is the zero matrix.} \\ & Be^{At} = e^{At}B & \text{If } AB = BA. \\ & e^{At}e^{Bt} = e^{(A+B)t} & \text{If } AB = BA. \\ & e^{At}e^{As} = e^{A(t+s)} & \text{If } AB = BA. \\ & e^{At}e^{As} = e^{A(t+s)} & \text{At and } As \text{ commute.} \\ & \left(e^{At}\right)^{-1} = e^{-At} & \text{Equivalently, } e^{At}e^{-At} = I. \\ & e^{At} = r_1(t)P_1 + \dots + r_n(t)P_n & \text{Putzer's spectral formula.} \\ & e^{At} = e^{\lambda_1 t}I + \frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2}(A - \lambda_1 I) & A \text{ is } 2 \times 2, \ \lambda_1 \neq \lambda_2 \text{ real.} \\ & e^{At} = e^{at} \cos bt I + \frac{e^{at} \sin bt}{b}(A - aI) & A \text{ is } 2 \times 2, \ \lambda_1 = \overline{\lambda}_2 = a + ib, \\ & b > 0. \\ & e^{At} = \sum_{n=0}^{\infty} A^n \frac{t^n}{n!} & \text{Picard series. See page 510.} \\ & e^{At} = P^{-1}e^{Jt}P & \text{Jordan form } J = PAP^{-1}. \end{split}$$

Putzer's Spectral Formula

The spectral formula of Putzer applies to a system $\mathbf{x}' = A\mathbf{x}$ to find the general solution, using matrices P_1, \ldots, P_n constructed from A and the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A, matrix multiplication, and the solution $\mathbf{r}(t)$ of the first order $n \times n$ initial value problem

$$\mathbf{r}'(t) = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 & 0\\ 1 & \lambda_2 & 0 & \cdots & 0 & 0\\ 0 & 1 & \lambda_3 & \cdots & 0 & 0\\ \vdots & & \vdots & & \\ 0 & 0 & 0 & \cdots & 1 & \lambda_n \end{pmatrix} \mathbf{r}(t), \quad \mathbf{r}(0) = \begin{pmatrix} 1\\ 0\\ \vdots\\ 0 \end{pmatrix}.$$

The system is solved by first order scalar methods and back-substitution. We will derive the formula separately for the 2×2 case (the one used most often) and the $n \times n$ case.

Putzer's Spectral Formula for a 2×2 matrix A

The general solution of $\mathbf{x}' = A\mathbf{x}$ is given by the formula

 $\mathbf{x}(t) = (r_1(t)P_1 + r_2(t)P_2)\,\mathbf{x}(0),$

where r_1, r_2, P_1, P_2 are defined as follows.

The eigenvalues $r = \lambda_1, \lambda_2$ are the two roots of the quadratic equation

$$\det(A - rI) = 0.$$

Define 2×2 matrices P_1 , P_2 by the formulae

$$P_1 = I, \quad P_2 = A - \lambda_1 I.$$

The functions $r_1(t)$, $r_2(t)$ are defined by the differential system

$$\begin{aligned} r_1' &= \lambda_1 r_1, & r_1(0) = 1, \\ r_2' &= \lambda_2 r_2 + r_1, & r_2(0) = 0. \end{aligned}$$

Proof: The Cayley-Hamilton formula $(A - \lambda_1 I)(A - \lambda_2 I) = \mathbf{0}$ is valid for any 2×2 matrix A and the two roots $r = \lambda_1, \lambda_2$ of the determinant equality $\det(A - rI) = 0$. The Cayley-Hamilton formula is the same as $(A - \lambda_2)P_2 = \mathbf{0}$, which implies the identity $AP_2 = \lambda_2 P_2$. Compute as follows.

$$\begin{aligned} \mathbf{x}'(t) &= (r_1'(t)P_1 + r_2'(t)P_2) \,\mathbf{x}(0) \\ &= (\lambda_1 r_1(t)P_1 + r_1(t)P_2 + \lambda_2 r_2(t)P_2) \,\mathbf{x}(0) \\ &= (r_1(t)A + \lambda_2 r_2(t)P_2) \,\mathbf{x}(0) \\ &= (r_1(t)A + r_2(t)AP_2) \,\mathbf{x}(0) \\ &= A \left(r_1(t)I + r_2(t)P_2 \right) \mathbf{x}(0) \\ &= A \mathbf{x}(t). \end{aligned}$$

This proves that $\mathbf{x}(t)$ is a solution. Because $\Phi(t) \equiv r_1(t)P_1 + r_2(t)P_2$ satisfies $\Phi(0) = I$, then any possible solution of $\mathbf{x}' = A\mathbf{x}$ can be represented by the given formula. The proof is complete.

Real Distinct Eigenvalues. Suppose A is 2×2 having real distinct eigenvalues λ_1 , λ_2 and $\mathbf{x}(0)$ is real. Then

$$r_1 = e^{\lambda_1 t}, \quad r_2 = \frac{e^{\lambda_1 t} - e^{\lambda_2 T}}{\lambda_1 - \lambda_2}$$

and

$$\mathbf{x}(t) = \left(e^{\lambda_1 t}I + \frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2}(A - \lambda_1 I)\right)\mathbf{x}(0).$$

The matrix exponential formula for real distinct eigenvalues:

$$e^{At} = e^{\lambda_1 t}I + \frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} (A - \lambda_1 I).$$

Real Equal Eigenvalues. Suppose A is 2×2 having real equal eigenvalues $\lambda_1 = \lambda_2$ and $\mathbf{x}(0)$ is real. Then $r_1 = e^{\lambda_1 t}$, $r_2 = te^{\lambda_1 t}$ and

$$\mathbf{x}(t) = \left(e^{\lambda_1 t}I + te^{\lambda_1 t}(A - \lambda_1 I)\right)\mathbf{x}(0).$$

The matrix exponential formula for real equal eigenvalues:

$$e^{At} = e^{\lambda_1 t} I + t e^{\lambda_1 t} (A - \lambda_1 I).$$

Complex Eigenvalues. Suppose A is 2×2 having complex eigenvalues $\lambda_1 = a + bi$ with b > 0 and $\lambda_2 = a - bi$. If $\mathbf{x}(0)$ is real, then a real solution is obtained by taking the real part of the spectral formula. This formula is formally identical to the case of real distinct eigenvalues. Then

$$\mathcal{R}e(\mathbf{x}(t)) = \left(\mathcal{R}e(r_1(t))I + \mathcal{R}e(r_2(t)(A - \lambda_1 I))\right)\mathbf{x}(0)$$
$$= \left(\mathcal{R}e(e^{(a+ib)t})I + \mathcal{R}e(e^{at}\frac{\sin bt}{b}(A - (a+ib)I))\right)\mathbf{x}(0)$$
$$= \left(e^{at}\cos bt\,I + e^{at}\frac{\sin bt}{b}(A - aI)\right)\mathbf{x}(0)$$

The matrix exponential formula for complex conjugate eigenvalues:

$$e^{At} = e^{at} \left(\cos bt I + \frac{\sin bt}{b} (A - aI) \right) \right).$$

How to Remember Putzer's Formula for a 2×2 Matrix A. The expressions

(1)
$$e^{At} = r_1(t)I + r_2(t)(A - \lambda_1 I),$$
$$r_1(t) = e^{\lambda_1 t}, \quad r_2(t) = \frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2}$$

are enough to generate all three formulae. The fraction $r_2(t)$ is a difference quotient with limit $te^{\lambda_1 t}$ as $\lambda_2 \to \lambda_1$, therefore the formula includes the case $\lambda_1 = \lambda_2$ by limiting. If $\lambda_1 = \overline{\lambda_2} = a + ib$ with b > 0, then the fraction r_2 is already real, because it has for $z = e^{\lambda_1 t}$ and $w = \lambda_1$ the form

$$r_2(t) = \frac{z - \overline{z}}{w - \overline{w}} = \frac{\sin bt}{b}.$$

Taking real parts of expression (1) then gives the complex case formula for e^{At} .

Putzer's Spectral Formula for an $n \times n$ Matrix A

The general solution of $\mathbf{x}' = A\mathbf{x}$ is given by the formula

$$\mathbf{x}(t) = (r_1(t)P_1 + r_2(t)P_2 + \dots + r_n(t)P_n)\,\mathbf{x}(0),$$

where $r_1, r_2, \ldots, r_n, P_1, P_2, \ldots, P_n$ are defined as follows.

The eigenvalues $r = \lambda_1, \ldots, \lambda_n$ are the roots of the polynomial equation

$$\det(A - rI) = 0.$$

Define $n \times n$ matrices P_1, \ldots, P_n by the formulae

$$P_1 = I, \quad P_k = (A - \lambda_{k-1}I)P_{k-1}, \quad k = 2, \dots, n.$$

More succinctly, $P_k = \prod_{j=1}^{k-1} (A - \lambda_j I)$. The functions $r_1(t), \ldots, r_n(t)$ are defined by the differential system

$$\begin{array}{rcl} r'_1 &=& \lambda_1 r_1, & r_1(0) = 1, \\ r'_2 &=& \lambda_2 r_2 + r_1, & r_2(0) = 0, \\ & \vdots & \\ r'_n &=& \lambda_n r_n + r_{n-1}, & r_n(0) = 0. \end{array}$$

Proof: The Cayley-Hamilton formula $(A - \lambda_1 I) \cdots (A - \lambda_n I) = \mathbf{0}$ is valid for any $n \times n$ matrix A and the n roots $r = \lambda_1, \ldots, \lambda_n$ of the determinant equality $\det(A - rI) = 0$. Two facts will be used: (1) The Cayley-Hamilton formula implies $AP_n = \lambda_n P_n$; (2) The definition of P_k implies $\lambda_k P_k + P_{k+1} = AP_k$ for $1 \le k \le n - 1$. Compute as follows.

$$\begin{array}{ccc} \mathbf{1} & \mathbf{x}'(t) = (r_1'(t)P_1 + \dots + r_n'(t)P_n) \, \mathbf{x}(0) \\ \\ \mathbf{2} & = \left(\sum_{k=1}^n \lambda_k r_k(t)P_k + \sum_{k=2}^n r_{k-1}P_k\right) \mathbf{x}(0) \\ \\ \mathbf{3} & = \left(\sum_{k=1}^{n-1} \lambda_k r_k(t)P_k + r_n(t)\lambda_n P_n + \sum_{k=1}^{n-1} r_k P_{k+1}\right) \mathbf{x}(0) \\ \\ \mathbf{4} & = \left(\sum_{k=1}^{n-1} r_k(t)(\lambda_k P_k + P_{k+1}) + r_n(t)\lambda_n P_n\right) \mathbf{x}(0) \end{aligned}$$

5
$$= \left(\sum_{k=1}^{n-1} r_k(t)AP_k + r_n(t)AP_n\right) \mathbf{x}(0)$$

6
$$= A\left(\sum_{k=1}^n r_k(t)P_k\right) \mathbf{x}(0)$$

7
$$= A\mathbf{x}(t).$$

Details: 1 Differentiate the formula for $\mathbf{x}(t)$. 2 Use the differential equations for r_1, \ldots, r_n . 3 Split off the last term from the first sum, then re-index the last sum. 4 Combine the two sums. 5 Use the recursion for P_k and the Cayley-Hamilton formula $(A - \lambda_n I)P_n = \mathbf{0}$. 6 Factor out A on the left. 7 Apply the definition of $\mathbf{x}(t)$.

This proves that $\mathbf{x}(t)$ is a solution. Because $\Phi(t) \equiv \sum_{k=1}^{n} r_k(t) P_k$ satisfies $\Phi(0) = I$, then any possible solution of $\mathbf{x}' = A\mathbf{x}$ can be so represented. The proof is complete.

Proofs of Matrix Exponential Properties

Verify $(e^{At})' = Ae^{At}$. Let \mathbf{x}_0 denote a column of the identity matrix. Define $\mathbf{x}(t) = e^{At}\mathbf{x}_0$. Then

$$(e^{At})' \mathbf{x}_0 = \mathbf{x}'(t) = A\mathbf{x}(t) = Ae^{At}\mathbf{x}_0.$$

Because this identity holds for all columns of the identity matrix, then $(e^{At})'$ and Ae^{At} have identical columns, hence we have proved the identity $(e^{At})' = Ae^{At}$.

Verify AB = BA **implies** $Be^{At} = e^{At}B$. Define $\mathbf{w}_1(t) = e^{At}B\mathbf{w}_0$ and $\mathbf{w}_2(t) = Be^{At}\mathbf{w}_0$. Calculate $\mathbf{w}'_1(t) = A\mathbf{w}_1(t)$ and $\mathbf{w}'_2(t) = BAe^{At}\mathbf{w}_0 = ABe^{At}\mathbf{w}_0 = A\mathbf{w}_2(t)$, due to BA = AB. Because $\mathbf{w}_1(0) = \mathbf{w}_2(0) = \mathbf{w}_0$, then the uniqueness assertion of the Picard-Lindelöf theorem implies that $\mathbf{w}_1(t) = \mathbf{w}_2(t)$. Because \mathbf{w}_0 is any vector, then $e^{At}B = Be^{At}$. The proof is complete.

Verify $e^{At}e^{Bt} = e^{(A+B)t}$. Let \mathbf{x}_0 be a column of the identity matrix. Define $\mathbf{x}(t) = e^{At}e^{Bt}\mathbf{x}_0$ and $\mathbf{y}(t) = e^{(A+B)t}\mathbf{x}_0$. We must show that $\mathbf{x}(t) = \mathbf{y}(t)$ for all t. Define $\mathbf{u}(t) = e^{Bt}\mathbf{x}_0$. We will apply the result $e^{At}B = Be^{At}$, valid for BA = AB. The details:

$$\mathbf{x}'(t) = (e^{At}\mathbf{u}(t))'$$

= $Ae^{At}\mathbf{u}(t) + e^{At}\mathbf{u}'(t)$
= $A\mathbf{x}(t) + e^{At}B\mathbf{u}(t)$
= $A\mathbf{x}(t) + Be^{At}\mathbf{u}(t)$
= $(A+B)\mathbf{x}(t).$

We also know that $\mathbf{y}'(t) = (A + B)\mathbf{y}(t)$ and since $\mathbf{x}(0) = \mathbf{y}(0) = \mathbf{x}_0$, then the Picard-Lindelöf theorem implies that $\mathbf{x}(t) = \mathbf{y}(t)$ for all t. This completes the proof.

Verify $e^{At}e^{As} = e^{A(t+s)}$. Let t be a variable and consider s fixed. Define $\mathbf{x}(t) = e^{At}e^{As}\mathbf{x}_0$ and $\mathbf{y}(t) = e^{A(t+s)}\mathbf{x}_0$. Then $\mathbf{x}(0) = \mathbf{y}(0)$ and both satisfy the differential equation $\mathbf{u}'(t) = A\mathbf{u}(t)$. By the uniqueness in the Picard-Lindelöf theorem, $\mathbf{x}(t) = \mathbf{y}(t)$, which implies $e^{At}e^{As} = e^{A(t+s)}$. The proof is complete.

Verify $e^{At} = \sum_{n=0}^{\infty} A^n \frac{t^n}{n!}$. The idea of the proof is to apply Picard iteration.

By definition, the columns of e^{At} are vector solutions $\mathbf{w}_1(t), \ldots, \mathbf{w}_n(t)$ whose values at t = 0 are the corresponding columns of the $n \times n$ identity matrix. According to the theory of Picard iterates, a particular iterate is defined by

$$\mathbf{y}_{n+1}(t) = \mathbf{y}_0 + \int_0^t A\mathbf{y}_n(r)dr, \quad n \ge 0$$

The vector \mathbf{y}_0 equals some column of the identity matrix. The Picard iterates can be found explicitly, as follows.

$$\begin{aligned} \mathbf{y}_{1}(t) &= \mathbf{y}_{0} + \int_{0}^{t} A \mathbf{y}_{0} dr \\ &= (I + At) \, \mathbf{y}_{0}, \\ \mathbf{y}_{2}(t) &= \mathbf{y}_{0} + \int_{0}^{t} A \mathbf{y}_{1}(r) dr \\ &= \mathbf{y}_{0} + \int_{0}^{t} A \left(I + At \right) \mathbf{y}_{0} dr \\ &= (I + At + A^{2}t^{2}/2) \, \mathbf{y}_{0}, \\ &\vdots \\ \mathbf{y}_{n}(t) &= \left(I + At + A^{2} \frac{t^{2}}{2} + \dots + A^{n} \frac{t^{n}}{n!} \right) \mathbf{y}_{0}. \end{aligned}$$

The Picard-Lindelöf theorem implies that for $\mathbf{y}_0 = \text{column } k$ of the identity matrix,

$$\lim_{n \to \infty} \mathbf{y}_n(t) = \mathbf{w}_k(t)$$

This being valid for each index k, then the columns of the matrix sum

$$\sum_{m=0}^{N} A^m \frac{t^m}{m!}$$

converge as $N \to \infty$ to $\mathbf{w}_1(t), \ldots, \mathbf{w}_n(t)$. This implies the matrix identity

$$e^{At} = \sum_{n=0}^{\infty} A^n \frac{t^n}{n!}.$$

The proof is complete.

Theorem 12 (Special Formulas for e^{At})

$$e^{\operatorname{diag}(\lambda_1,\dots,\lambda_n)t} = \operatorname{diag}\left(e^{\lambda_1 t},\dots,e^{\lambda_n t}\right) \qquad \begin{array}{l} \text{Real or complex constants} \\ \lambda_1,\dots,\lambda_n. \end{array}$$
$$e^{\begin{pmatrix} a & b \\ -b & a \end{pmatrix}^t} = e^{at}\begin{pmatrix} \cos bt & \sin bt \\ -\sin bt & \cos bt \end{pmatrix} \qquad \begin{array}{l} \text{Real } a, b. \end{array}$$

Theorem 13 (Computing e^{Jt} for J Triangular)

If J is an upper triangular matrix, then a column $\mathbf{u}(t)$ of e^{Jt} can be computed by solving the system $\mathbf{u}'(t) = J\mathbf{u}(t)$, $\mathbf{u}(0) = \mathbf{v}$, where \mathbf{v} is the corresponding column of the identity matrix. This problem can always be solved by first-order scalar methods of growth-decay theory and the integrating factor method.

Theorem 14 (Block Diagonal Matrix)

If $A = \operatorname{diag}(B_1, \ldots, B_k)$ and each of B_1, \ldots, B_k is a square matrix, then

$$e^{At} = \operatorname{diag}\left(e^{B_1t}, \dots, e^{B_kt}\right).$$