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10.4 Matrix Exponential

The problem

x′(t) = Ax(t), x(0) = x0

has a unique solution, according to the Picard-Lindelöf theorem. Solve
the problem n times, when x0 equals a column of the identity matrix,
and write w1(t), . . . , wn(t) for the n solutions so obtained. Define the
matrix exponential by packaging these n solutions into a matrix:

eAt ≡ aug(w1(t), . . . ,wn(t)).

By construction, any possible solution of x′ = Ax can be uniquely ex-
pressed in terms of the matrix exponential eAt by the formula

x(t) = eAtx(0).

Matrix Exponential Identities

Announced here and proved below are various formulae and identities
for the matrix exponential eAt:

(

eAt
)

′

= AeAt Columns satisfy x′ = Ax.

e0 = I Where 0 is the zero matrix.

BeAt = eAtB If AB = BA.

eAteBt = e(A+B)t If AB = BA.

eAteAs = eA(t+s) At and As commute.
(

eAt
)

−1
= e−At Equivalently, eAte−At = I.

eAt = r1(t)P1 + · · · + rn(t)Pn Putzer’s spectral formula.

See page 508.

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A − λ1I) A is 2 × 2, λ1 6= λ2 real.

eAt = eλ1tI + teλ1t(A − λ1I) A is 2 × 2, λ1 = λ2 real.

eAt = eat cos bt I +
eat sin bt

b
(A − aI) A is 2×2, λ1 = λ2 = a+ ib,

b > 0.

eAt =
∞
∑

n=0

An tn

n!
Picard series. See page 510.

eAt = P−1eJtP Jordan form J = PAP−1.
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Putzer’s Spectral Formula

The spectral formula of Putzer applies to a system x′ = Ax to find the
general solution, using matrices P1, . . . , Pn constructed from A and the
eigenvalues λ1, . . . , λn of A, matrix multiplication, and the solution r(t)
of the first order n × n initial value problem

r′(t) =

















λ1 0 0 · · · 0 0
1 λ2 0 · · · 0 0
0 1 λ3 · · · 0 0

...
0 0 0 · · · 1 λn

















r(t), r(0) =













1
0
...
0













.

The system is solved by first order scalar methods and back-substitution.
We will derive the formula separately for the 2 × 2 case (the one used
most often) and the n × n case.

Putzer’s Spectral Formula for a 2 × 2 matrix A

The general solution of x′ = Ax is given by the formula

x(t) = (r1(t)P1 + r2(t)P2)x(0),

where r1, r2, P1, P2 are defined as follows.

The eigenvalues r = λ1, λ2 are the two roots of the quadratic equation

det(A − rI) = 0.

Define 2 × 2 matrices P1, P2 by the formulae

P1 = I, P2 = A − λ1I.

The functions r1(t), r2(t) are defined by the differential system

r′1 = λ1r1, r1(0) = 1,
r′2 = λ2r2 + r1, r2(0) = 0.

Proof: The Cayley-Hamilton formula (A − λ1I)(A − λ2I) = 0 is valid for
any 2 × 2 matrix A and the two roots r = λ1, λ2 of the determinant equality
det(A− rI) = 0. The Cayley-Hamilton formula is the same as (A−λ2)P2 = 0,
which implies the identity AP2 = λ2P2. Compute as follows.

x′(t) = (r′1(t)P1 + r′2(t)P2)x(0)

= (λ1r1(t)P1 + r1(t)P2 + λ2r2(t)P2)x(0)

= (r1(t)A + λ2r2(t)P2)x(0)

= (r1(t)A + r2(t)AP2)x(0)

= A (r1(t)I + r2(t)P2)x(0)

= Ax(t).

This proves that x(t) is a solution. Because Φ(t) ≡ r1(t)P1 + r2(t)P2 satisfies
Φ(0) = I, then any possible solution of x′ = Ax can be represented by the given
formula. The proof is complete.
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Real Distinct Eigenvalues. Suppose A is 2×2 having real distinct
eigenvalues λ1, λ2 and x(0) is real. Then

r1 = eλ1t, r2 =
eλ1t − eλ2T

λ1 − λ2

and

x(t) =

(

eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A − λ1I)

)

x(0).

The matrix exponential formula for real distinct eigenvalues:

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A − λ1I).

Real Equal Eigenvalues. Suppose A is 2 × 2 having real equal
eigenvalues λ1 = λ2 and x(0) is real. Then r1 = eλ1t, r2 = teλ1t and

x(t) =
(

eλ1tI + teλ1t(A − λ1I)
)

x(0).

The matrix exponential formula for real equal eigenvalues:

eAt = eλ1tI + teλ1t(A − λ1I).

Complex Eigenvalues. Suppose A is 2 × 2 having complex eigen-
values λ1 = a + bi with b > 0 and λ2 = a − bi. If x(0) is real, then a
real solution is obtained by taking the real part of the spectral formula.
This formula is formally identical to the case of real distinct eigenvalues.
Then

Re(x(t)) = (Re(r1(t))I + Re(r2(t)(A − λ1I)))x(0)

=

(

Re(e(a+ib)t)I + Re(eat sin bt

b
(A − (a + ib)I))

)

x(0)

=

(

eat cos bt I + eat sin bt

b
(A − aI))

)

x(0)

The matrix exponential formula for complex conjugate eigenvalues:

eAt = eat

(

cos bt I +
sin bt

b
(A − aI))

)

.

How to Remember Putzer’s Formula for a 2 × 2 Matrix A.

The expressions

eAt = r1(t)I + r2(t)(A − λ1I),

r1(t) = eλ1t, r2(t) =
eλ1t − eλ2t

λ1 − λ2

(1)
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are enough to generate all three formulae. The fraction r2(t) is a differ-
ence quotient with limit teλ1t as λ2 → λ1, therefore the formula includes
the case λ1 = λ2 by limiting. If λ1 = λ2 = a + ib with b > 0, then the
fraction r2 is already real, because it has for z = eλ1t and w = λ1 the
form

r2(t) =
z − z

w − w
=

sin bt

b
.

Taking real parts of expression (1) then gives the complex case formula
for eAt.

Putzer’s Spectral Formula for an n × n Matrix A

The general solution of x′ = Ax is given by the formula

x(t) = (r1(t)P1 + r2(t)P2 + · · · + rn(t)Pn)x(0),

where r1, r2, . . . , rn, P1, P2, . . . , Pn are defined as follows.

The eigenvalues r = λ1, . . . , λn are the roots of the polynomial equation

det(A − rI) = 0.

Define n × n matrices P1, . . . , Pn by the formulae

P1 = I, Pk = (A − λk−1I)Pk−1, k = 2, . . . , n.

More succinctly, Pk = Πk−1
j=1(A−λjI). The functions r1(t), . . . , rn(t) are

defined by the differential system

r′1 = λ1r1, r1(0) = 1,
r′2 = λ2r2 + r1, r2(0) = 0,

...
r′n = λnrn + rn−1, rn(0) = 0.

Proof: The Cayley-Hamilton formula (A − λ1I) · · · (A − λnI) = 0 is valid for
any n× n matrix A and the n roots r = λ1, . . . , λn of the determinant equality
det(A − rI) = 0. Two facts will be used: (1) The Cayley-Hamilton formula
implies APn = λnPn; (2) The definition of Pk implies λkPk + Pk+1 = APk for
1 ≤ k ≤ n − 1. Compute as follows.

1 x′(t) = (r′1(t)P1 + · · · + r′n(t)Pn)x(0)

2 =

(

n
∑

k=1

λkrk(t)Pk +

n
∑

k=2

rk−1Pk

)

x(0)

3 =

(

n−1
∑

k=1

λkrk(t)Pk + rn(t)λnPn +

n−1
∑

k=1

rkPk+1

)

x(0)

4 =

(

n−1
∑

k=1

rk(t)(λkPk + Pk+1) + rn(t)λnPn

)

x(0)
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5 =

(

n−1
∑

k=1

rk(t)APk + rn(t)APn

)

x(0)

6 = A

(

n
∑

k=1

rk(t)Pk

)

x(0)

7 = Ax(t).

Details: 1 Differentiate the formula for x(t). 2 Use the differential equa-

tions for r1,. . . ,rn. 3 Split off the last term from the first sum, then re-index

the last sum. 4 Combine the two sums. 5 Use the recursion for Pk and

the Cayley-Hamilton formula (A − λnI)Pn = 0. 6 Factor out A on the left.

7 Apply the definition of x(t).

This proves that x(t) is a solution. Because Φ(t) ≡
∑n

k=1 rk(t)Pk satisfies
Φ(0) = I, then any possible solution of x′ = Ax can be so represented. The
proof is complete.

Proofs of Matrix Exponential Properties

Verify
(

eAt
)

′

= AeAt. Let x0 denote a column of the identity matrix. Define

x(t) = eAtx0. Then
(

eAt
)

′

x0 = x′(t)
= Ax(t)
= AeAtx0.

Because this identity holds for all columns of the identity matrix, then (eAt)′ and

AeAt have identical columns, hence we have proved the identity
(

eAt
)

′

= AeAt.

Verify AB = BA implies BeAt = eAtB. Define w1(t) = eAtBw0 and
w2(t) = BeAtw0. Calculate w′

1(t) = Aw1(t) and w′

2(t) = BAeAtw0 =
ABeAtw0 = Aw2(t), due to BA = AB. Because w1(0) = w2(0) = w0, then the
uniqueness assertion of the Picard-Lindelöf theorem implies that w1(t) = w2(t).
Because w0 is any vector, then eAtB = BeAt. The proof is complete.

Verify eAteBt = e(A+B)t. Let x0 be a column of the identity matrix. Define
x(t) = eAteBtx0 and y(t) = e(A+B)tx0. We must show that x(t) = y(t) for
all t. Define u(t) = eBtx0. We will apply the result eAtB = BeAt, valid for
BA = AB. The details:

x′(t) =
(

eAtu(t)
)

′

= AeAtu(t) + eAtu′(t)
= Ax(t) + eAtBu(t)
= Ax(t) + BeAtu(t)
= (A + B)x(t).

We also know that y′(t) = (A + B)y(t) and since x(0) = y(0) = x0, then the
Picard-Lindelöf theorem implies that x(t) = y(t) for all t. This completes the
proof.
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Verify eAteAs = eA(t+s). Let t be a variable and consider s fixed. Define
x(t) = eAteAsx0 and y(t) = eA(t+s)x0. Then x(0) = y(0) and both satisfy the
differential equation u′(t) = Au(t). By the uniqueness in the Picard-Lindelöf
theorem, x(t) = y(t), which implies eAteAs = eA(t+s). The proof is complete.

Verify eAt =
∞
∑

n=0

An tn

n!
. The idea of the proof is to apply Picard iteration.

By definition, the columns of eAt are vector solutions w1(t), . . . , wn(t) whose
values at t = 0 are the corresponding columns of the n × n identity matrix.
According to the theory of Picard iterates, a particular iterate is defined by

yn+1(t) = y0 +

∫ t

0

Ayn(r)dr, n ≥ 0.

The vector y0 equals some column of the identity matrix. The Picard iterates
can be found explicitly, as follows.

y1(t) = y0 +
∫ t

0 Ay0dr
= (I + At)y0,

y2(t) = y0 +
∫ t

0
Ay1(r)dr

= y0 +
∫ t

0
A (I + At)y0dr

=
(

I + At + A2t2/2
)

y0,
...

yn(t) =
(

I + At + A2 t
2

2 + · · · + An t
n

n!

)

y0.

The Picard-Lindelöf theorem implies that for y0 = column k of the identity
matrix,

lim
n→∞

yn(t) = wk(t).

This being valid for each index k, then the columns of the matrix sum

N
∑

m=0

Am
tm

m!

converge as N → ∞ to w1(t), . . . , wn(t). This implies the matrix identity

eAt =
∞
∑

n=0

An
tn

n!
.

The proof is complete.

Theorem 12 (Special Formulas for eAt)

ediag(λ1,...,λn)t = diag
(

eλ1t, . . . , eλnt
)

Real or complex constants

λ1, . . . , λn.

e

(

a b
−b a

)

t

= eat

(

cos bt sin bt
− sin bt cos bt

)

Real a, b.



10.4 Matrix Exponential 511

Theorem 13 (Computing eJt for J Triangular)
If J is an upper triangular matrix, then a column u(t) of eJt can be computed

by solving the system u′(t) = Ju(t), u(0) = v, where v is the correspond-

ing column of the identity matrix. This problem can always be solved by

first-order scalar methods of growth-decay theory and the integrating factor

method.

Theorem 14 (Block Diagonal Matrix)
If A = diag(B1, . . . , Bk) and each of B1, . . . , Bk is a square matrix, then

eAt = diag
(

eB1t, . . . , eBkt
)

.


