Sample Quiz6 Problem 1. Resistive Network with 2 Loops and DC Sources.


The Branch Current Method can be used to find a $3 \times 3$ linear system for the branch currents $I_{1}, I_{2}, I_{3}$.

$$
\begin{array}{rlrr}
I_{1}-I_{2}-I_{3} & =0 & & \text { KCL, upper node } \\
4 I_{1}+2 I_{2} & & =28 & \\
\text { KVL, left loop } \\
2 I_{2}-I_{3} & =7 & & \text { KVL, right loop }
\end{array}
$$

Symbol KCL means Kirchhoff's Current Law, which says the algebraic sum of the currents at a node is zero. Symbol KVL means Kirchhoff's Voltage Law, which says the algebraic sum of the voltage drops around a closed loop is zero.
(a) Solve the equations to verify the currents reported in the figure: $I_{1}=5, I_{2}=4, I_{3}=1$ Amperes.
(b) Compute the voltage drops across resistors $R_{1}, R_{2}, R_{3}$. Answer: $20,8,1$ volts.

References. Edwards-Penney BVP 3.7, electric circuit supplement. All About Circuits Volume I - DC, by T. Kuphaldt. Course slides on Electric Circuits. Solved examples of electrical networks can be found in the lecture notes of Ruye Wang.

Sample Quiz6 Problem 2. Separation train: Xylene, Styrene, Toluene, and Benzene are separated in 3 distillation columns. Symbols $F t, D, B, D 1, B 1, D 2, B 2$ are molar flow rates in $\mathrm{mol} / \mathrm{min}$.


Balance Equations. The four Xylene separations imply balance equation $0.07 D 1+0.18 B 1+$ $0.15 D 2+0.24 B 2=0.15(70) \mathrm{kg}-\mathrm{mol}$, based on 1 min of operation. There are 3 other similar equations, for styrene, toluene and benzene. Multiply by 100 to produce the balance equations

$$
\begin{aligned}
& \text { Xylene: } \quad 7 \mathrm{D} 1+18 \mathrm{~B} 1+15 \mathrm{D} 2+24 \mathrm{~B} 2=15(70) \\
& \text { Styrene: } 4 \mathrm{D} 1+24 \mathrm{~B} 1+10 \mathrm{D} 2+65 \mathrm{~B} 2=25(70) \\
& \text { Toluene: } 54 \mathrm{D} 1+42 \mathrm{~B} 1+54 \mathrm{D} 2+10 \mathrm{~B} 2=40(70) \\
& \text { Benzene: } 35 \mathrm{D} 1+16 \mathrm{~B} 1+21 \mathrm{D} 2+1 \mathrm{~B} 2=20(70)
\end{aligned}
$$

Molar Flow Rates. Because $D$ flows to column 2, then $D=D 1+B 1$. Molar flow rates are computed individually in distillation column 2 as a linear combination of vector separations:

$$
\left(\begin{array}{c}
\text { Xylene molar flow rate } \\
\text { Styrene molar flow rate } \\
\text { Toluene molar flow rate } \\
\text { Benzene molar flow rate }
\end{array}\right)=\frac{D 1}{100}\left(\begin{array}{r}
7 \\
4 \\
54 \\
35
\end{array}\right)+\frac{B 1}{100}\left(\begin{array}{l}
18 \\
24 \\
42 \\
16
\end{array}\right) .
$$

(a) Solve the balance equations for D1, B1, D2, B2. Answers: $26.25,17.50,8.75,17.50$
(b) Compute the four individual molar flow rates for distillation column 2.

References. Edwards-Penney Sections 3.1, 3.2, 3.3. Course manuscript Linear Algebraic Equations, No Matrices. Michael Cutlip and Mordecai Shacham, Problem Solving in Chemical Engineering with Numerical Methods, Prentice-Hall (1998) ISBN-10: 0138625662.

