Quiz 9, Problem 1.Harmonic Vibration

A mass of $m=200$ grams attached to a spring of Hooke's constant k undergoes free undamped vibration. At equilibrium, the spring is stretched 10 cm by a force of 4 Newtons. At time $t=0$, the spring is stretched 0.4 m and the mass is set in motion with initial velocity $3 \mathrm{~m} / \mathrm{s}$ directed away from equilibrium. Find:
(a) The numerical value of Hooke's constant k.
(b) The initial value problem for vibration $x(t)$.
(c) Show details for solving the initial value problem for $x(t)$.

The answer is $x(t)=\frac{2}{5} \cos (\sqrt{200} t)+\frac{3}{20} \sqrt{2} \sin (\sqrt{200} t)$, graphed below.

Quiz 9, Problem 2.Harmonic Vibration, Continued

Assume results (a), (b), (c) from Problem 1. In particular, assume

$$
x(t)=\frac{2}{5} \cos (\sqrt{200} t)+\frac{3 \sqrt{2}}{20} \sin (\sqrt{200} t)
$$

Complete these parts.
(d) Plot the solution $x(t)$ using technology, approximately matching the graphic below.
(e) Show trig details for conversion of $x(t)$ to phase-amplitude form

$$
x(t)=\frac{\sqrt{82}}{20} \cos (\sqrt{200} t-\arctan (3 \sqrt{2} / 8)) .
$$

(f) Report from the answer in part (e) decimal values for the period, amplitude and phase angle. Two-place decimal accuracy is sufficient.

Quiz 9, Problem 3. Beats

The physical phenomenon of beats refers to the periodic interference of two sound waves of slightly different frequencies. A destructive interference occurs during a very brief interval, so our impression is that the sound periodically stops, only briefly, and then starts again with a beat, a section of sound that is instantaneously loud again. An illustration of the graphical meaning appears in the figure below.

Beats

Shown in red is a periodic oscillation $x(t)=$ $2 \sin 4 t \sin 40 t$ with rapidly-varying factor $\sin 40 t$ and the two slowly-varying envelope curves $x_{1}(t)=2 \sin 4 t$ (black), $x_{2}(t)=-2 \sin 4 t$ (grey).

The undamped, forced spring-mass problem $x^{\prime \prime}+1296 x=640 \cos (44 t), x(0)=x^{\prime}(0)=0$ has by trig identities the solution $x(t)=\cos (36 t)-\cos (44 t)=2 \sin 4 t \sin 40 t$.

The Problem. Solve the initial value problem

$$
x^{\prime \prime}+1444 x=1056 \cos (50 t), \quad x(0)=x^{\prime}(0)=0
$$

by undetermined coefficients and linear algebra, obtaining the solution $x(t)=\cos (38 t)-$ $\cos (50 t)$. Then show the trig details for $x(t)=2 \sin (6 t) \sin (44 t)$. Finally, graph $x(t)$ and its slowly varying envelope curves on $0 \leq t \leq \pi$.

