Quiz 8

Please attempt all parts of the three problems. You will receive full credit for a problem, if it is 60 percent completed.

Quiz 8, Problem 1. $R L C$-Circuit

The Problem. Suppose $E=\sin (40 t), L=1 \mathrm{H}, R=50 \Omega$ and $C=0.01 \mathrm{~F}$. The model for the charge $Q(t)$ is $L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)$.
(a) Differentiate the charge model and substitute $I=\frac{d Q}{d t}$ to obtain the current model $I^{\prime \prime}+50 I^{\prime}+100 I=40 \cos (40 t)$.
(b) Find the reactance $S=\omega L-\frac{1}{\omega C}$, where $\omega=40$ is the input frequency, the natural frequency of $E=\sin (40 t)$ and $E^{\prime}=40 \cos (40 t)$. Then find the impedance $Z=$ $\sqrt{S^{2}+R^{2}}$.
(c) The steady-state current is $I(t)=A \cos (40 t)+B \sin (40 t)$ for some constants A, B. Substitute $I=A \cos (40 t)+B \sin (40 t)$ into the current model (a) and solve for A, B. Answers: $A=-\frac{6}{625}, B=\frac{8}{625}$.
(d) Write the answer in (c) in phase-amplitude form $I=I_{0} \sin (40 t-\delta)$ with $I_{0}>0$ and $\delta \geq 0$. Then compute the time lag δ / ω.
Answers: $I_{0}=0.016, \delta=\arctan (0.75), \delta / \omega=0.0160875$.

References

Course slides on Electric Circuits, Edwards-Penney Differential Equations and Boundary Value Problems, section 3.7, course supplement. EP or EPH sections 5.4, 5.5, 5.6.

Quiz 8, Problem 2. Picard's Theorem and Spring-Mass Models
Picard-Lindelöf Theorem. Let $\vec{f}(x, \vec{y})$ be defined for $\left|x-x_{0}\right| \leq h,\left\|\vec{y}-\vec{y}_{0}\right\| \leq k$, with \vec{f} and $\frac{\partial \vec{f}}{\partial \vec{y}}$ continuous. Then for some constant $H, 0<H<h$, the problem

$$
\left\{\begin{array}{l}
\vec{y}^{\prime}(x)=\vec{f}(x, \vec{y}(x)), \quad\left|x-x_{0}\right|<H, \\
\vec{y}\left(x_{0}\right)=\vec{y}_{0}
\end{array}\right.
$$

has a unique solution $\vec{y}(x)$ defined on the smaller interval $\left|x-x_{0}\right|<H$.

Emile Picard

The Problem. The second order problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+2 u^{\prime}+17 u=100 \tag{1}\\
u(0)=1 \\
u^{\prime}(0)=-1
\end{array}\right.
$$

is a spring-mass model with damping and constant external force. The variables are time x in seconds and elongation $u(x)$ in meters, measured from equilibrium. Coefficients in the equation represent mass $m=1 \mathrm{~kg}$, a viscous damping constant $c=2$, Hooke's constant $k=17$ and external force $F(x)=100$.
Convert the scalar initial value problem into a vector problem, to which Picard's vector theorem applies, by supplying details for the parts below.
(a) The conversion uses the position-velocity substitution $y_{1}=u(x), y_{2}=u^{\prime}(x)$, where y_{1}, y_{2} are the invented components of vector \vec{y}. Then the initial data $u(0)=1, u^{\prime}(0)=-1$ converts to the vector initial data

$$
\vec{y}(0)=\binom{1}{-1} \text {. }
$$

(b) Differentiate the equations $y_{1}=u(x), y_{2}=u^{\prime}(x)$ in order to find the scalar system of two differential equations, known as a dynamical system:

$$
y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=-17 y_{1}-2 y_{2}+100 .
$$

(c) The derivative of vector function $\vec{y}(x)$ is written $\vec{y}^{\prime}(x)$ or $\frac{d \vec{y}}{d x}(x)$. It is obtained by componentwise differentiation: $\vec{y}^{\prime}(x)=\binom{y_{1}^{\prime}}{y_{2}^{\prime}}$. The vector differential equation model of scalar system (11) is

$$
\left\{\begin{align*}
\vec{y}^{\prime}(x) & =\left(\begin{array}{rr}
0 & 1 \\
-17 & -2
\end{array}\right) \vec{y}(x)+\binom{0}{100}, \tag{2}\\
\vec{y}(0) & =\binom{1}{-1} .
\end{align*}\right.
$$

(d) System (22) fits the hypothesis of Picard's theorem, using symbols

$$
\vec{f}(x, \vec{y})=\left(\begin{array}{rr}
0 & 1 \\
-17 & -2
\end{array}\right) \vec{y}(x)+\binom{0}{100}, \quad \vec{y}_{0}=\binom{1}{-1} .
$$

The components of vector function \vec{f} are continuously differentiable in variables x, y_{1}, y_{2}, therefore \vec{f} and $\frac{\partial \vec{f}}{\partial \vec{y}}$ are continuous.

Quiz 8, Problem 3. Solving Higher Order Constant-Coefficient Equations

The Algorithm applies to constant-coefficient homogeneous linear differential equations of order N, for example equations like

$$
y^{\prime \prime}+16 y=0, \quad y^{\prime \prime \prime \prime}+4 y^{\prime \prime}=0, \quad \frac{d^{5} y}{d x^{5}}+2 y^{\prime \prime \prime}+y^{\prime \prime}=0 .
$$

1. Find the N th degree characteristic equation by Euler's substitution $y=e^{r x}$. For instance, $y^{\prime \prime}+16 y=0$ has characteristic equation $r^{2}+16=0$, a polynomial equation of degree $N=2$.
2. Find all real roots and all complex conjugate pairs of roots satisfying the characteristic equation. List the N roots according to multiplicity.
3. Construct N distinct Euler solution atoms from the list of roots. Then the general solution of the differential equation is a linear combination of the Euler solution atoms with arbitrary coefficients $c_{1}, c_{2}, c_{3}, \ldots$.
The solution space is then $S=\operatorname{span}($ the N Euler solution atoms).
Examples: Constructing Euler Solution Atoms from roots.
Three roots $0,0,0$ produce three atoms $e^{0 x}, x e^{0 x}, x^{2} e^{0 x}$ or $1, x, x^{2}$.
Three roots $0,0,2$ produce three atoms $e^{0 x}, x e^{0 x}, e^{2 x}$.
Two complex conjugate roots $2 \pm 3 i$ produce two atoms $e^{2 x} \cos (3 x), e^{2 x} \sin (3 x)$.
Explained. The Euler substitution $y=e^{r x}$ produces a solution of the differential equation when r is a complex root of the characteristic equation. Complex exponentials are not used directly. Ever. They are replaced by sines and cosines times real exponentials, which are Euler solution atoms. Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$ implies $e^{2 x} \cos (3 x)=e^{2 x} \frac{e^{3 x i}+e^{-3 x i}}{2}=\frac{1}{2} e^{2 x+3 x i}+\frac{1}{2} e^{2 x-3 x i}$, which is a linear combination of complex exponentials, solutions of the differential equation because of Euler's substitution. Superposition implies $e^{2 x} \cos (3 x)$ is a solution. Similar for $e^{2 x} \sin (3 x)$. The independent pair $e^{2 x} \cos (3 x), e^{2 x} \sin (3 x)$ replaces both $e^{(2+3 i) x}$ and $e^{(2-3 i) x}$.

Four complex conjugate roots listed according to multiplicity as $2 \pm 3 i, 2 \pm 3 i$ produce four atoms $e^{2 x} \cos (3 x), e^{2 x} \sin (3 x), x e^{2 x} \cos (3 x), x e^{2 x} \sin (3 x)$.
Seven roots $1,1,3,3,3, \pm 3 i$ produce seven atoms $e^{x}, x e^{x}, e^{3 x}, x e^{3 x}, x^{2} e^{3 x}, \cos (3 x), \sin (3 x)$.
Two conjugate complex roots $a \pm b i(b>0)$ arising from roots of $(r-a)^{2}+b^{2}=0$ produce two atoms $e^{a x} \cos (b x), e^{a x} \sin (b x)$.

The Problem

Solve for the general solution or the particular solution satisfying initial conditions.
(a) $y^{\prime \prime}+4 y^{\prime}=0$
(b) $y^{\prime \prime}+4 y=0$
(c) $y^{\prime \prime \prime}+4 y^{\prime}=0$
(d) $y^{\prime \prime}+4 y=0, y(0)=1, y^{\prime}(0)=2$
(e) $y^{\prime \prime \prime \prime}+81 y^{\prime \prime}=0, y(0)=y^{\prime}(0)=0, y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=1$
(f) The characteristic equation is $(r+1)^{2}\left(r^{2}-1\right)=0$.
(g) The characteristic equation is $(r-1)^{2}\left(r^{2}-1\right)^{2}\left((r+1)^{2}+9\right)=0$.
(h) The characteristic equation roots, listed according to multiplicity, are $0,0,-1,2,2,3+4 i, 3-$ $4 i, 3+4 i, 3-4 i$.

