Problem 2, Lab 13 (a) Answer: A=H, p=0 (b) p=0, A=1 (c) Use pplane, web site at Missouri, search string "free pplane phase portrait" dx/dt = 0.5*(1-y-x), dy/dt = 0.1*(1-y) Don't print it. Draw a replica by hand. (d) A(t) = equil sol + constant/integrating factor = H + c / exp(epsilon * t) Then find c = A(0)-H to satisfy A(t) = H + c / exp(epsilon * t) at t=0. (e) Let q(t) = p(t)*exp(k*t). Product rule implies q' = p' * exp(k*t) + k * p * exp(k*t). Use p' = k*(H-A-p) to obtain q' = k * (H-A-p) * exp(k*t) + k * p * exp(k*t) q' = k * (H-A) * exp(k*t) - p * k * exp(k*t) + k * p * exp(k*t) q' = k * (H-A) * exp(k*t) q' = k * ((-c) / exp(epsilon * t)) * exp(kt) where c = A(0)-H, by part (d) q' = k * (H-A(0)) * exp(-epsilon * t)) * exp(k*t) q' = k * (H-A(0)) * exp(k*t-epsilon*t) (f) Quadrature applied to the equation in (e) gives q(t) = constant + integral of q' over [0,t] Fundamental Theorem of Calculus q(t) = c[1] + k * (H-A(0)) * exp(k*t-epsilon*t)/(k-epsilon) q(t) = c[1] + k * (H-A(0)) * exp(a*t)/ a, where a=k-epsilon (g) The the results are consistent, because the pplane portrait already chose many values for p[0] and A[0]. (h) Because a = k - epsilon = 0.5 - 0.1 = 0.4 > 0, then p(t) = q(t) * exp(-k*t) p(t) = c[1] * exp(-k*t) + k * (H-A(0)) *exp(-k*t+a*t)/ a p(t) = c[1] * exp(-k*t) + k * (H-A(0)) *exp(-epsilon*t)/ a A(t) = H + (A(0)-H) * exp(-epsilon*t) by part (d) The limits of each variable are 0, H, respectively, because of the negative exponentials. REPORT: Limit p(t) = 0, Limit A(t) = H. This is verified from the pplane phase portrait.