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Stability

Consider an autonomous system ~u′(t) = ~f(~u(t)) with~f continuously differentiable in a
regionD in the plane.

Stable equilibrium. An equilibrium point ~u0 in D is said to be stable provided for each
ε > 0 there corresponds δ > 0 such that (a) and (b) hold:

(a) Given ~u(0) inD with ‖~u(0)− ~u0‖ < δ, then ~u(t) exists on 0 ≤ t <∞.

(b) Inequality ‖~u(t)− ~u0‖ < ε holds for 0 ≤ t <∞.

Unstable equilibrium. The equilibrium point ~u0 is called unstable provided it is not
stable, which means (a) or (b) fails (or both).

Asymptotically stable equilibrium. The equilibrium point~u0 is said to be asymptotically
stable provided (a) and (b) hold (it is stable), and additionally

(c) limt→∞ ‖~u(t)− ~u0‖ = 0 for ‖~u(0)− ~u0‖ < δ.



Isolated equilibria

An autonomous system is said to have an isolated equilibrium at ~u = ~u0 provided ~u0 is
the only constant solution of the system in |~u− ~u0| < r, for r > 0 sufficiently small.

Theorem 1 (Isolated Equilibrium)
The following are equivalent for a constant planar system ~u′(t) = A~u(t):

1. The system has an isolated equilibrium at ~u = ~0.

2. det(A) 6= 0.

3. The roots λ1, λ2 of det(A− λI) = 0 satisfy λ1λ2 6= 0.

Proof: The expansion det(A−λI) = (λ1−λ)(λ2−λ) = λ2− (λ1 +λ2)λ+λ1λ2 shows that det(A) =
λ1λ2. Hence 2 ≡ 3. We prove now 1 ≡ 2. If det(A) = 0, then A~u = ~0 has infinitely many solutions ~u on a
line through ~0, therefore ~u = ~0 is not an isolated equilibrium. If det(A) 6= 0, then A~u = ~0 has exactly one
solution ~u = ~0, so the system has an isolated equilibrium at ~u = ~0.



Classification of Isolated Equilibria

For linear equations
~u′(t) = A~u(t),

we explain the phase portrait classifications

saddle, node, spiral, center
near an isolated equilibrium point ~u = ~0, and how to detect these classifications, when
they occur.

Symbols λ1, λ2 are the roots of det(A− λI) = 0.

Atoms corresponding to roots λ1, λ2 happen to classify the phase portrait as well as its
stability. A shortcut will be explained to determine a classification, based only on the
atoms.



Figure 1. Saddle Figure 2. Improper node

Figure 3. Proper node Figure 4. Spiral

Figure 5. Center



Saddle λ1, λ2 real, λ1λ2 < 0

A saddle has solution formula

~u(t) = eλ1t~c1 + eλ2t~c2,

~c1 =
A− λ2I

λ1 − λ2

~u(0), ~c2 =
A− λ1I

λ2 − λ1

~u(0).

The phase portrait shows two lines through the origin which are
tangents at t = ±∞ for all orbits.

A saddle is unstable at t = ∞ and t = −∞, due to the limits of
the atoms er1t, er2t at t = ±∞.



Node λ1, λ2 real, λ1λ2 > 0

Case λ1 = λ2. An improper node has solution formula

~u(t) = eλ1t~c1 + teλ1t~c2,

~c1 = ~u(0), ~c2 = (A− λ1I)~u(0).

An improper node is further classified as a degenerate node (~c2 6=
~0) or a star node (~c2 = ~0). Discussed below is subcase λ1 =
λ2 < 0. For subcase λ1 = λ2 > 0, replace∞ by−∞.

degenerate node A phase portrait has all trajectories tan-
gent at t =∞ to direction~c2.

star node A phase portrait consists of trajectories
~u(t) = eλ1t~c1, a straight line, with limit
~0 at t =∞. Vector~c1 can be any direc-
tion.



Node λ1, λ2 real, λ1λ2 > 0

Case λ1 6= λ2. A proper node is any node that is not improper. Its
solution formula is

~u(t) = eλ1t~c1 + eλ2t~c2,

~c1 =
A− λ2I

λ1 − λ2

~u(0), ~c2 =
A− λ1I

λ2 − λ1

~u(0).

• A trajectory near a proper node satisfies, for some direction ~v,
limt→ω ~u

′(t)/|~u′(t)| = ~v, for either ω = ∞ or ω = −∞.
Briefly, ~u(t) is tangent to ~v at t = ω.

• To each direction ~v corresponds some ~u(t) tangent to ~v.



Spiral λ1 = λ2 = a+ ib complex, a 6= 0, b > 0.
A spiral has solution formula

~u(t) = eat cos(bt)~c1 + eat sin(bt)~c2,

~c1 = ~u(0), ~c2 =
A− aI
b

~u(0).

All solutions are bounded harmonic oscillations of natural frequency
b times an exponential amplitude which grows if a > 0 and decays
if a < 0. An orbit in the phase plane spirals out if a > 0 and
spirals in if a < 0.



Center λ1 = λ2 = a+ ib complex, a = 0, b > 0

A center has solution formula

~u(t) = cos(bt)~c1 + sin(bt)~c2,

~c1 = ~u(0), ~c2 =
1

b
A~u(0).

All solutions are bounded harmonic oscillations of natural frequency
b. Orbits in the phase plane are periodic closed curves of period
2π/b which encircle the origin.



Attractor and Repeller

• An equilibrium point is called an attractor provided solutions starting nearby limit to
the point as t→∞.

• A repeller is an equilibrium point such that solutions starting nearby limit to the point
as t→ −∞.

• Terms like attracting node and repelling spiral are defined analogously.



Almost linear systems

A nonlinear planar autonomous system ~u′(t) = ~f(~u(t)) is called almost linear at equi-
librium point ~u = ~u0 if there is a 2× 2 matrixA and a vector function~g such that

~f(~u) = A(~u− ~u0) + ~g(~u),

lim
‖~u−~u0‖→0

‖~g(~u)‖
‖~u− ~u0‖

= 0.

The function~g has the same smoothness as~f .

We investigate the possibility that a local phase diagram at ~u = ~u0 for the nonlinear
system~u′(t) = ~f(~u(t)) is graphically identical to the one for the linear system~y′(t) =
A~y(t) at~y = 0.



Jacobian Matrix

Almost linear system results will apply to all isolated equilibria of ~u′(t) = ~f(~u(t)).
This is accomplished by expanding f in a Taylor series about each equilibrium point, which
implies that the ideas are applicable to different choices ofA and g, depending upon which
equilibrium point ~u0 was considered.

Define the Jacobian matrix of~f at equilibrium point ~u0 by the formula

J = aug
(
∂1
~f(~u0), ∂2

~f(~u0)
)
.

Taylor’s theorem for functions of two variables says that

~f(~u) = J(~u− ~u0) + ~g(~u)

where ~g(~u)/‖~u − ~u0‖ → 0 as ‖~u − ~u0‖ → 0. Therefore, for ~f continuously
differentiable, we may always take A = J to obtain from the almost linear system
~u′(t) = ~f(~u(t)) its linearization y′(t) = A~y(t).


