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Stability

Consider an autonomous system @ (¢) = f(@(t)) with f continuously differentiable in a
region D in the plane.

Stable equilibrium. An equilibrium point U, in D is said to be stable provided for each
€ > 0 there corresponds & > 0 such that (a) and (b) hold:

(a) Given U(0) in D with ||G(0) — || < J, then TW(¢) existson 0 < t < oo.

(b) Inequality ||T(t) — Ty|| < €holds for 0 < t < oo.

Unstable equilibrium. The equilibrium point g is called unstable provided it is not
stable, which means (a) or (b) fails (or both).

Asymptotically stable equilibrium. The equilibrium point U is said to be asymptotically
stable provided (a) and (b) hold (it is stable), and additionally

(© limy o ||E(t) — To|| = O for ||F(0) — To|| < o.



Isolated equilibria

An autonomous system is said to have an isolated equilibrium at i = U, provided Uy is
the only constant solution of the system in |G — Ug| < 7, for # > 0 sufficiently small.

Theorem 1 (Isolated Equilibrium)
The following are equivalent for a constant planar system @’'(t) = Au(t):

1. The system has an isolated equilibrium at @ = 0.
2. det(A) # 0.
3. The roots Ay, A of det(A — AI) = 0 satisfy A\; A\, # 0.

Proof: The expansion det(A — AI) = (A1 — A)(Az — A) = A2 — (A1 + A2)A + A1 Ao shows that det(A) =
A1A2. Hence 2 = 3. We prove now 1 =2. If det(A) = 0, then A = 0 has infinitely many solutions @ on a
line through 0, therefore & = 0 is not an isolated equlhbrlum If det(A) # 0, then Ad = 0 has exactly one
solution i = 0, so the system has an isolated equilibrium at @ = 0.



Classification of Isolated Equilibria

For linear equations

i (t) = Ai(t),
we explain the phase portrait classifications

saddle, node, spiral, center

near an isolated equilibrium point @ = 0, and how to detect these classifications, when
they occur.

Symbols A;, As are the roots of det(A — AI) = 0.

Atoms corresponding to roots Ay, Ao happen to classify the phase portrait as well as its
stability. A shortcut will be explained to determine a classification, based only on the
atoms.
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Figure 1. Saddle

Figure 3. Proper node

Figure 5. Center

Figure 2. Improper node
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Figure 4. Spiral



Saddle M\, Ayreal, A1\ <O
A saddle has solution formula
u(t) = eMiC, + ey,
A — AT A— T
¢ = - u( ), T =—"""~1(0).
A — Ao — A\
The phase portrait shows two lines through the origin which are
tangents at t = oo for all orbits.

A saddle is unstable att = oo and t = —oo, due to the limits of
the atoms e™?, e™ at t = 4-oc.



Node Al, Az real, AlAz >0
Case \; = \,. An improper node has solution formula

ﬁ(t) = eAlt 61 + te)\lt 62,

— @(0), & = (A — \I)F(0).

An improper node is further classified as a degenerate node (¢, #
0) or a star node (G, = O) Discussed below is subcase \; =
X2 < 0. For subcase A\; = A, > 0, replace co by —oo.

degenerate node A phase portrait has all trajectories tan-
gent at t = oo to direction C,.

star node A phase portrait consists of trajectories
i(t) = eM'c, a straight line, with limit
0 at ¢ = oo. Vector &, can be any direc-
tion.



Node A1, Apreal, Ai A, > 0
Case \; # \,. A proper node is any node that is not improper. Its
solution formula is
u(t) = eMiC, + ey,
A — AT A— T

C C, = — 1(0).
C]_ Al— u( )? C2 )\2—)\1 u( )

e A trajectory near a proper node satisfies, for some direction Vv,
lim;_,, W' (t)/|d'(t)| = ¥, for either w = oo or w = —o0.
Briefly, ti(¢) is tangentto Vatt = w.

e To each direction V corresponds some i(t) tangent to V.



Spiral

Al :Xz = a+’ibC0mp|eX,a # O,b > 0.
A spiral has solution formula

i(t) = e* cos(bt) ¢, + e* sin(bt) Cs,

A —al
61 E ﬁ(O), _’2 = T ﬁ(O).

All solutions are bounded harmonic oscillations of natural frequency
b times an exponential amplitude which grows if a > 0 and decays
if a < 0. An orbit in the phase plane spirals out if a > 0 and
spirals inifa < 0.



Center

Al :Xz = a—|—’l:bC0mp|eX,CL = O,b >0
A center has solution formula

ti(t) = cos(bt) ¢, + sin(bt) Co,
1
61 ES ﬁ(O), 62 = E Aﬁ(O).
All solutions are bounded harmonic oscillations of natural frequency

b. Orbits in the phase plane are periodic closed curves of period
27 /b which encircle the origin.



Attractor and Repeller

e An equilibrium point is called an attractor provided solutions starting nearby limit to
the point as £ — oo.

e A repeller is an equilibrium point such that solutions starting nearby limit to the point
ast — —oo.

e Terms like attracting node and repelling spiral are defined analogously.



Almost linear systems

A nonlinear planar autonomous system @' (t) = f(d(%)) is called almost linear at equi-
librium point U = Uy if there is a 2 X 2 matrix A and a vector function g such that

—

f(t) = A(d — ) + g(1),
[€(@)]|

— N — Oo
li—dol| =0 || T — Uo|
The function g has the same smoothness as f.
We investigate the possibility that a local phase diagram at U = g for the nonlinear

system @' (t) = F(@(t)) is graphically identical to the one for the linear system ¥’ (t) =
Ay (t) aty = 0.



Jacobian Matrix

Almost linear system results will apply to all isolated equilibria of @ (t) = f(Td(t)).
This is accomplished by expanding f in a Taylor series about each equilibrium point, which
implies that the ideas are applicable to different choices of A and g, depending upon which
equilibrium point Uy was considered.

Define the Jacobian matrix of f at equilibrium point U, by the formula
J = aug (9, £(d), 8, () ) -
Taylor’s theorem for functions of two variables says that
f() = J (T — t,) + &(T)

where (@) /||&@ — To|| — 0 as ||§ — To|| — 0. Therefore, for f continuously
differentiable, we may always take A = J to obtain from the almost linear system

@' (t) = f(d(¢)) its linearization ¥ (t) = A (t).



