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Transfer of Local Linearized Phase Portrait

THEOREM.
Let Uy be an equilibrium point of the nonlinear dynamical system

o' (t) = f(d(t)).

Assume the Jacobian of f(i@) at & = i, is matrix A and @ (t) = AU(t) has linear
classification saddle, node, center or spiral at its equilibrium point (0, 0).

Then the nonlinear system @' (t) = f(@(t)) at equilibrium point = &, has the same
classification, with the following exceptions:

If the linear classification at (0, 0) for u’(t) = A{(t) is a node or a center,
then the nonlinear classification at i = 1, might be a spiral.

The exceptions in terms of roots of the characteristic equation: A; = A (real equal roots)
and Ay = Xy = bt (b > 0, purely complex roots).



Transfer of Local Linearized Stability

THEOREM.
Let Uy be an equilibrium point of the nonlinear dynamical system

a'(t) = £(d(t)).

Assume the Jacobian of F(ﬁ) at U = Uj is matrix A. Then the nonlinear system
i'(t) = f(d(t)) at @ = Uy has the same stability as @(t) = AU(t) with the
following exception:

If the linear classification at (0, 0) for @ (t) = At(t) is a center, then the
nonlinear classification at i = 1y might be either stable or unstable.



How to Classify Linear Equilibria

e Assume the linear systemis 2 X 2,0 = Au.
e Compute the roots A;, A, of the characteristic equation of A.
e Find the atoms A;(t), A5 (t) for these two roots.

e [f the atoms have sine and cosine factors, then a rotation is implied and the classification
is either a center or spiral. Pure harmonic atoms [no exponentials] imply a center,
otherwise it’s a spiral.

e [f the atoms are exponentials, then the classification is a non-rotation, a node or saddle.
Take limits of the atoms at £ — oo and also ¢ = —oo. If one limit answer is
A; = A, = 0, then it’s a node, otherwise it’s a saddle.



Justification of the Classification Method
The Cayley-Hamilton-Ziebur theorem implies that the general solution of

u = Ad

is the equation
where A;, A, are the atoms corresponding to the roots A{, A of the characteristic equa-

tion of A. Although dl, d2 are not arbitrary, the classification only depends on the roots
and hence only on the atoms. We construct examples of the behavior by choosing dl, d2,

for example,
= 1 = 0

If the atoms were cos t, sin t, then the solution by C-H-Z would be * = cost, y =
sin t. Analysis of the trajectory shows a circle, hence we expect a center at (0, 0). Similar
examples can be invented for the other cases of a spiral, saddle, or node, by considering
possible pairs of atoms.



Three Examples

Consider the nonlinear systems and selected equilibrium points. The third example has
infinitely many equilibria.

A
Spiral-Saddle {z, — ] fi’; Equilibria (1, —1), (—1, 1)
r = vy, o
Center-Saddle g = —20x + 5z°. Equilibria (0, 0), (2,0), (—2,0)

! 3sin(x) + vy,

Node-Saddle { o sin(z) + 24. Equilibria (27, 0), (7, 0)



Spiral-saddle Example

The nonlinear function and Jacobian are
s T+ vy 1 1
f(way):<1_w2)a A(m,y)=<_2w0>-

Then A(1, —1) = (_; (1)) and A(—1,1) = (; (1))

e The characteristic equations are A> — XA + 2 = 0 and A> — X — 2 = 0 with roots
% + % 71 and 2, —1, respectively.

e The atoms for A(1, —1) are e/ cos(+/7t/2), e'/* sin(+/7t/2). Rotation im-
plies a center or spiral. No pure harmonics, so it’s a spiral. The limitatt = —oo0 is
zero for both atoms, so it’s stable at minus infinity, implying unstable at infinity.

e The atoms for A(—1,1) are €*, e*. No rotation implies a node or saddle. Neither
the limit at infinity nor at minus infinity gives zero, so it’s a saddle.



Center-saddle Example

The nonlinear function and Jacobian are

= 0 1

Then A(0,0) = < _28 (1)> and A(%£2,0) = (48 (1))

e The characteristic equations are A2 + 20 = 0 and A? — 40 = 0 with roots £=+/201
and £=+/40, respectively.

e The atoms for A (0, 0) are cos(+/20t), sin(1/20t). Rotation implies a center or
spiral. The atoms are pure harmonics, so it’s a center. The nonlinear system can be
a center or a spiral and either stable or unstable. The issue is decided by a computer
algebra system to be a center.

e The atoms for A(£2, 0) are e, e, where b = 1/40. No rotation implies a node
or saddle. Neither the limit at infinity nor at minus infinity gives zero, so it’s a saddle.



Node-saddle Example

The nonlinear function and Jacobian are

F(w’y):(3sinac—|—y>, A(w,y):(?)cosa: 1).

sin ¢ + 2y cosx 2

Then A(27,0) = (? ;) and A(m,0) = (:i’ ;)

e The characteristic equations are A> — 5\ + 5 = 0 and A?> + A — 5 = 0 with roots
2(5+ +v/5) = 3.6,1.38and 1(—1 + v/21) = 1.79, —2.79, respectively.

e The atoms for A (27, 0) are e, e’ witha > 0, b > 0. No rotation implies a node
or saddle. The atoms limit to zero at t = — o0, so one end is stable, which eliminates
the saddle. It’s a node, unstable at infinity.

e The atoms for A(m, 0) are e, e®, where a > 0 and b < 0. No rotation implies

a node or saddle. Neither the limit at infinity nor at minus infinity gives zero, so it’s a
saddle.

e The two classifications and their stability transfers to the nonlinear system. The only
case when a node does not automatically transfer is the case of equal roots.



