
252

4.4 Computing π, ln 2 and e

The approximations π ≈ 3.1415927, ln 2 ≈ 0.69314718, e ≈ 2.7182818
can be obtained by numerical methods applied to the following initial
value problems:

y′ =
4

1 + x2
, y(0) = 0, π = y(1),(1)

y′ =
1

1 + x
, y(0) = 0, ln 2 = y(1),(2)

y′ = y, y(0) = 1, e = y(1).(3)

Equations (1)–(3) define the constants π, ln 2 and e through the corre-
sponding initial value problems.

The third problem (3) requires a numerical method like RK4, while the
other two can be solved using Simpson’s quadrature rule. It is a fact that
RK4 reduces to Simpson’s rule for y′ = F (x), therefore, for simplicity,
RK4 can be used for all three problems, ignoring speed issues. It will
be seen that the choice of the DE-solver algorithm (e.g., RK4) affects
computational accuracy.

Computing π =
∫ 1
0 4(1 + x2)−1dx

The easiest method is Simpson’s rule. It can be implemented in virtually
every computing environment. The code below works in popular matlab-
compatible numerical laboratories. It modifies easily to other computing
platforms, such as maple and mathematica. To obtain the answer for
π = 3.1415926535897932385 correct to 12 digits, execute the code on the
right in Table 10, below the definition of f .

Table 10. Numerical integration of
∫ 1

0
4(1 + x2)−1dx.

Simpson’s rule is applied, using matlab-compatible code. About 50 subdivisions

are required.

function ans = simp(x0,x1,n,f)

h=(x1-x0)/n; ans=0;

for i=1:n;

ans1=f(x0)+4*f(x0+h/2)+f(x0+h);

ans=ans+(h/6)*ans1;

x0=x0+h;

end

function y = f(x)

y = 4/(1+x*x);

ans=simp(0,1,50,f)

It is convenient in some laboratories to display answers with printf

or fprintf, in order to show 12 digits. For example, scilab prints
3.1415927 by default, but 3.141592653589800 using printf.

The results checked in maple give π ≈ 3.1415926535897932385, accu-
rate to 20 digits, regardless of the actual maple numerical integration



4.4 Computing π, ln 2 and e 253

algorithm chosen (three were possible). The checks are invoked by
evalf(X,20) where X is replaced by int(4/(1+x*x),x=0..1).

The results for an approximation to π using numerical solvers for dif-
ferential equations varied considerably from one algorithm to another,
although all were accurate to 5 rounded digits. A summary for odepack
routines appears in Table 11, obtained from the scilab interface. A
selection of routines supported by maple appear in Table 12. Default
settings were used with no special attempt to increase accuracy.

The Gear routines refer to those in the 1971 textbook [?]. The Livermore
stiff solver lsode can be found in reference [?]. The Runge-Kutta routine
of order 7-8 called dverk78 appears in the 1991 reference of Enright
[?]. The multistep routines of Adams-Moulton and Adams-Bashforth
are described in standard numerical analysis texts, such as [?]. Taylor
series methods are described in [?]. The Fehlberg variant of RK4 is given
in [?].

Table 11. Differential equation numeric solver results for odepack

routines, applied to the problem y′ = 4/(1 + x2), y(0) = 0.

Exact value of π 3.1415926535897932385 20 digits
Runge-Kutta 4 3.1415926535910 10 digits
Adams-Moulton lsode 3.1415932355842 6 digits
Stiff Solver lsode 3.1415931587318 5 digits
Runge-Kutta-Fehlberg 45 3.1416249508084 4 digits

Table 12. Differential equation numeric solver results for some maple-

supported routines, applied to the problem y′ = 4/(1 + x2), y(0) = 0.

Exact value of π 3.1415926535897932385 20 digits
Classical RK4 3.141592653589790 15 digits
Gear 3.141592653688446 11 digits
Dverk78 3.141592653607044 11 digits
Taylor Series 3.141592654 10 digits
Runge-Kutta-Fehlberg 45 3.141592674191119 8 digits
Multistep Gear 3.141591703761340 7 digits
Lsode stiff solver 3.141591733742521 6 digits

Computing ln 2 =
∫ 1
0 dx/(1 + x)

Like the problem of computing π, the formula for ln 2 arises from the
method of quadrature applied to y′ = 1/(1 + x), y(0) = 0. The solution
is y(x) =

∫ x
0 dt/(1 + t). Application of Simpson’s rule with 150 points

gives ln 2 ≈ 0.693147180563800, which agrees with the exact value ln 2 =
0.69314718055994530942 through 12 digits.

More robust numerical integration algorithms produce the exact answer
for ln 2, within the limitations of machine representation of numbers.



254

Differential equation methods, as in the case of computing π, have results
accurate to at least 5 digits, as is shown in Tables 13 and 14. Lower
order methods such as classical Euler will produce results accurate to
three digits or less.

Table 13. Differential equation numeric solver results for odepack

routines, applied to the problem y′ = 1/(1 + x), y(0) = 0.

Exact value of ln 2 0.69314718055994530942 20 digits
Adams-Moulton lsode 0.69314720834637 7 digits
Stiff Solver lsode 0.69314702723982 6 digits
Runge-Kutta 4 0.69314718056011 11 digits
Runge-Kutta-Fehlberg 45 0.69314973055488 5 digits

Table 14. Differential equation numeric solver results for maple-

supported routines, applied to the problem y′ = 1/(1 + x), y(0) = 0.

Exact value of ln 2 0.69314718055994530942 20 digits
Classical Euler 0.6943987430550621 2 digits
Classical Heun 0.6931487430550620 5 digits
Classical RK4 0.6931471805611659 11 digits
Gear 0.6931471805646605 11 digits
Gear Poly-extr 0.6931471805664855 11 digits
Dverk78 0.6931471805696615 11 digits
Adams-Bashforth 0.6931471793736268 8 digits
Adams-Bashforth-Moulton 0.6931471806484283 10 digits
Taylor Series 0.6931471806 10 digits
Runge-Kutta-Fehlberg 45 0.6931481489496502 5 digits
Lsode stiff solver 0.6931470754312113 7 digits
Rosenbrock stiff solver 0.6931473787603164 6 digits

Computing e from y′ = y, y(0) = 1

The initial attack on the problem uses classical RK4 with f(x, y) = y.
After 300 steps, classical RK4 finds the correct answer for e to 12 digits:
e ≈ 2.71828182846. In Table 15, the details appear of how to accomplish
the calculation using matlab-compatible code. Corresponding maple

code appears in Table 16 and in Table 17. Additional code for octave

and scilab appear in Tables 18 and 19.



4.4 Computing π, ln 2 and e 255

Table 15. Numerical solution of y′ = y, y(0) = 1.

Classical RK4 with 300 subdivisions using matlab-compatible code.

function [x,y]=rk4(x0,y0,x1,n,f)

x=x0;y=y0;h=(x1-x0)/n;

for i=1:n;

k1=h*f(x,y);

k2=h*f(x+h/2,y+k1/2);

k3=h*f(x+h/2,y+k2/2);

k4=h*f(x+h,y+k3);

y=y+(k1+2*k2+2*k3+k4)/6;

x=x+h;

end

function yp = ff(x,y)

yp= y;

[x,y]=rk4(0,1,1,300,ff)

Table 16. Numerical solution of y′ = y, y(0) = 1 by maple internal

classical RK4 code.

de:=diff(y(x),x)=y(x):

ic:=y(0)=1:

Y:=dsolve({de,ic},y(x),
type=numeric,method=classical[rk4]):

Y(1);

Table 17. Numerical solution of y′ = y, y(0) = 1 by classical RK4

with 300 subdivisions using maple-compatible code.

rk4 := proc(x0,y0,x1,n,f)

local x,y,k1,k2,k3,k4,h,i:

x=x0: y=y0: h=(x1-x0)/n:

for i from 1 to n do

k1:=h*f(x,y):k2:=h*f(x+h/2,y+k1/2):

k3:=h*f(x+h/2,y+k2/2):k4:=h*f(x+h,y+k3):

y:=evalf(y+(k1+2*k2+2*k3+k4)/6,Digits+4):

x:=x+h:

od:

RETURN(y):

end:

f:=(x,y)->y;

rk4(0,1,1,300,f);

A matlab m-file "rk4.m" is loaded into scilab-4.0 by getf("rk4.m") .

Most scilab code is loaded by using default file extension .sci , e.g.,
rk4scilab.sci is a scilab file name. This code must obey scilab

rules. An example appears below in Table 18.



256

Table 18. Numerical solution of y′ = y, y(0) = 1 by classical RK4

with 300 subdivisions, using scilab-4.0 code.

function

[x,y]=rk4sci(x0,y0,x1,n,f)

x=x0,y=y0,h=(x1-x0)/n

for i=1:n

k1=h*f(x,y)

k2=h*f(x+h/2,y+k1/2)

k3=h*f(x+h/2,y+k2/2)

k4=h*f(x+h,y+k3)

y=y+(k1+2*k2+2*k3+k4)/6

x=x+h

end

endfunction

function yp = ff(x,y)

yp= y

endfunction

[x,y]=rk4sci(0,1,1,300,ff)

The popularity of octave as a free alternative to matlab has kept it alive
for a number of years. Writing code for octave is similar to matlab and
scilab, however readers are advised to look at sample code supplied
with octave before trying complicated projects. In Table 19 can be
seen some essential agreements and differences between the languages.
Versions of scilab after 4.0 have a matlab to scilab code translator.

Table 19. Numerical solution of y′ = y, y(0) = 1 by classical RK4

with 300 subdivisions using octave-2.1.

function

[x,y]=rk4oct(x0,y0,x1,n,f)

x=x0;y=y0;h=(x1-x0)/n;

for i=1:n

k1=h*feval(f,x,y);

k2=h*feval(f,x+h/2,y+k1/2);

k3=h*feval(f,x+h/2,y+k2/2);

k4=h*feval(f,x+h,y+k3);

y=y+(k1+2*k2+2*k3+k4)/6;

x=x+h;

endfor

endfunction

function yp = ff(x,y)

yp= y;

end

[x,y]=rk4oct(0,1,1,300,’ff’)

Exercises 4.4

Computing π. Compute π = y(1)
from the initial value problem y′ =
4/(1 + x2), y(0) = 0, using the given
method.

1. Use the Rectangular integration
rule. Determine the number of
steps for 5-digit precision.

2. Use the Rectangular integration
rule. Determine the number of
steps for 8-digit precision.

3. Use the Trapezoidal integration
rule. Determine the number of
steps for 5-digit precision.

4. Use the Trapezoidal integration



4.4 Computing π, ln 2 and e 257

rule. Determine the number of
steps for 8-digit precision.

5. Use classical RK4. Determine the
number of steps for 5-digit preci-
sion.

6. Use classical RK4. Determine the
number of steps for 10-digit preci-
sion.

7. Use computer algebra system as-
sist for RK4. Report the number
of digits of precision using system
defaults.

8. Use numerical workbench assist
for RK4. Report the number of
digits of precision using system
defaults.

Computing ln(2). Compute ln(2) =
y(1) from the initial value problem
y′ = 1/(1 + x), y(0) = 0, using the
given method.

9. Use the Rectangular integration
rule. Determine the number of
steps for 5-digit precision.

10. Use the Rectangular integration
rule. Determine the number of
steps for 8-digit precision.

11. Use the Trapezoidal integration
rule. Determine the number of
steps for 5-digit precision.

12. Use the Trapezoidal integration
rule. Determine the number of
steps for 8-digit precision.

13. Use classical RK4. Determine the
number of steps for 5-digit preci-
sion.

14. Use classical RK4. Determine the
number of steps for 10-digit preci-
sion.

15. Use computer algebra system as-
sist for RK4. Report the number
of digits of precision using system
defaults.

16. Use numerical workbench assist
for RK4. Report the number of
digits of precision using system
defaults.

Computing e. Compute e = y(1)
from the initial value problem y′ = y,
y(0) = 1, using the given computer as-
sist. Report the number of digits of
precision using system defaults.

17. Improved Euler method, also
known as Heun’s method.

18. RK4 method.

19. RKF45 method.

20. Adams-Moulton method.

Stiff Differential Equation. The
flame propagation equation y′ =
y2(1−y) is known to be stiff for initial
conditions y(0) = y0 with y0 > 0 and
small. Use classical RK4 and then a
stiff solver to compute and plot the so-
lution y(t) in each case. Expect 3000
steps with RK4 versus 100 with a stiff
solver.

The exact solution of this equation can
be expressed in terms of the Lambert
function w(u), defined by u = w(x)
if and only if ueu = x. For example,
y(0) = 0.01 gives

y(t) =
1

w (99e99−t) + 1
.

See R.M. Corless, G.H. Gonnet,
D.E.G. Hare, D.J. Jeffrey, and D.E.
Knuth. “On The Lambert W Func-
tion,” Advances in Computational
Mathematics 5 (1996): 329-359.

21. y(0) = 0.01

22. y(0) = 0.005

23. y(0) = 0.001

24. y(0) = 0.0001


