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The Matrix Eigenanalysis Method
The preceding discussion of data conversion now gives way to synthetic abstract definitions
which distill the essential theory of eigenanalysis.

All of this is algebra, devoid of motivation or application.



Eigenpairs

Definition 1 (Eigenpair)
A pair (λ, v), where v 6= 0 is a vector and λ is a complex number, is called an eigenpair
of the n× n matrixA provided

Av = λv (v 6= 0 required).(1)

• The nonzero requirement in (1) results from seeking directions for a coordinate
system: the zero vector is not a direction.

• Any vector v 6= 0 that satisfies (1) is called an eigenvector for λ and the value
λ is called an eigenvalue of the square matrix A.



Eigenanalysis Algorithm

Theorem 1 (Algebraic Eigenanalysis)
Eigenpairs (λ, v) of an n× n matrix A are found by this two-step algorithm:

Step 1 (College Algebra). Solve for eigenvalues λ in the nth order poly-
nomial equation det(A− λI) = 0.
Step 2 (Linear Algebra). For a given root λ from Step 1, a corresponding
eigenvector v 6= 0 is found by applying the frame sequence methoda to the
homogeneous linear equation

(A− λI)v = 0.

The answer for v is the list of partial derivatives ∂t1v, ∂t2v, . . . , where t1,
t2, . . . are invented symbols assigned to the free variables.

The reader is asked to apply the algorithm to the identity matrix I; then Step 1 gives n duplicate answers λ = 1
and Step 2 gives n answers, the columns of the identity matrix I.

a For Bv = 0, the frame sequence begins with B, instead of aug(B, 0). The sequence ends with rref(B). Then
the reduced echelon system is written, followed by assignment of free variables and display of the general solution v.



Proof of the Algebraic Eigenanalysis Theorem
The equationAv = λv is equivalent to (A−λI)v = 0, which is a set of homogeneous
equations, consistent always because of the solution v = 0.
Fix λ and define B = A − λI . We show that an eigenpair (λ, v) exists with v 6= 0
if and only if det(B) = 0, i.e., det(A − λI) = 0. There is a unique solution
v to the homogeneous equation Bv = 0 exactly when Cramer’s rule applies, in which
case v = 0 is the unique solution. All that Cramer’s rule requires is det(B) 6= 0.
Therefore, an eigenpair exists exactly when Cramer’s rule fails to apply, which is when the
determinant of coefficients is zero: det(B) = 0.
Eigenvectors forλ are found from the general solution to the system of equationsBv = 0
whereB = A−λI . The rref method produces systematically a reduced echelon system
from which the general solution v is written, depending on invented symbols t1, . . . , tk.
Since there is never a unique solution, at least one free variable exists. In particular, the last
frame rref(B) of the sequence has a row of zeros, which is a useful sanity test.
The basis of eigenvectors for λ is obtained from the general solution v, which is a linear
combination involving the parameters t1, . . . , tk. The basis elements are reported as the
list of partial derivatives ∂t1v, . . . , ∂tkv.



Eigenpair Packages
The eigenpairs of a 3× 3 matrix for which Fourier’s model holds are labeled

(λ1, v1), (λ2, v2), (λ3, v3).

An eigenvector package is a matrix package P of eigenvectors v1, v2, v3 given by

P = aug(v1, v2, v3).

An eigenvalue package is a matrix packageD of eigenvalues given by

D = diag(λ1, λ2, λ3).

Important is the pairing that is inherited from the eigenpairs, which dictates the packaging order of the eigen-
vectors and eigenvalues. Matrices P , D are not unique: possible are 3! (= 6) column permutations.



Data Conversion Example
The eigenvalues for the 3 × 3 data conversion problem are λ1 = 1, λ2 = 0.001,
λ3 = 0.01 and the eigenvectors v1, v2, v3 are the columns of the identity matrix I .
Then the eigenpair packages are

D =

 1 0 0
0 0.001 0
0 0 0.01

 , P =

 1 0 0
0 1 0
0 0 1

 .

Theorem 2 (Eigenpair Packages)
Let P be a matrix package of eigenvectors and D the corresponding matrix pack-
age of eigenvalues. Then for all vectors c,

AP c = PDc.



Proof of the Eigenpair Package Theorem
Proof: The result is valid for n× n matrices.
We prove the eigenpair package theorem for 3 × 3 matrices. The two sides of the equation are expanded as
follows.

PDc = P

 λ1 0 0
0 λ2 0
0 0 λ3

 c1
c2
c3

 Expand RHS.

= P

 λ1c1
λ2c2
λ3c3


= λ1c1v1 + λ2c2v2 + λ3c3v3 Because P has columns v1, v2, v3.

AP c = A(c1v2 + c2v2 + c3v3) Expand LHS.
= c1λ1v1 + c2λ2v2 + c3λ3v3 Fourier’s model.



The EquationAP = PD

The question of Fourier’s model holding for a given 3 × 3 matrix A is settled here.
According to the result, a matrix A for which Fourier’s model holds can be constructed
by the formula A = PDP−1 where D is any diagonal matrix and P is an invertible
matrix.

Theorem 3 (AP = PD)
Fourier’s modelA(c1v1 + c2v2 + c3v3) = c1λ1v1 + c2λ2v2 + c3λ3v3 holds for
eigenpairs (λ1, v1), (λ2, v2), (λ3, v3) if and only if the packages

P = aug(v1, v2, v3), D = diag(λ1, λ2, λ3)

satisfy the two requirements

1. Matrix P is invertible, e.g., det(P ) 6= 0.

2. Matrix A = PDP−1, or equivalently, AP = PD.



Proof Details forAP = PD

Assume Fourier’s model holds. Define P and D to be the eigenpair packages. Then 1
holds, because the columns of P are independent. By Theorem 2,AP c = PDc for all
vectors c. Taking c equal to a column of the identity matrix I implies the columns ofAP
and PD are identical, that is, AP = PD. A multiplication of AP = PD by P−1

gives 2.

Conversely, let P and D be given packages satisfying 1, 2. Define v1, v2, v3 to be the
columns of P . Then the columns pass the rank test, because P is invertible, proving
independence of the columns. Define λ1, λ2, λ3 to be the diagonal elements ofD. Using
AP = PD, we calculate the two sides ofAP c = PDc as in the proof of Theorem 2,
which shows that x = c1v1+c2v2+c2v3 impliesAx = c1λ1v1+c2λ2v2+c3λ3v3.
Hence Fourier’s model holds.



Diagonalization
A square matrix A is called diagonalizable provided AP = PD for some diagonal
matrix D and invertible matrix P . The preceding discussions imply that D must be a
package of eigenvalues ofA and P must be the corresponding package of eigenvectors of
A. The requirement on P to be invertible is equivalent to asking that the eigenvectors of
A be independent and equal in number to the column dimension ofA.

The matrices A for which Fourier’s model is valid is precisely the class of diagonalizable
matrices. This class is not the set of all square matrices: there are matrices A for which
Fourier’s model is invalid. They are called non-diagonalizable matrices.



Distinct Eigenvalues and Diagonalization
The construction for eigenvector package P always produces independent columns. Even
ifA has fewer thann eigenpairs, the construction still produces independent eigenvectors.
In such non-diagonalizable cases, caused by insufficient columns to form P , matrix A
must have an eigenvalue of multiplicity greater than one.
If all eigenvalues are distinct, then the correct number of independent eigenvectors were
found and A is then diagonalizable with packages D, P satisfying AP = PD. This
proves the following result.

Theorem 4 (Distinct Eigenvalues)
If an n × n matrix A has n distinct eigenvalues, then it has n eigenpairs and A
is diagonalizable with eigenpair packages D, P satisfying AP = PD.



1 Example (Computing 2× 2 Eigenpairs)

Find all eigenpairs of the 2× 2 matrix A =

(
1 0
2 −1

)
.

Solution:
College Algebra. The eigenvalues are λ1 = 1, λ2 = −1. Details:

0 = det(A− λI) Characteristic equation.

=

∣∣∣∣ 1− λ 0
2 −1− λ

∣∣∣∣ Subtract λ from the diagonal.

= (1− λ)(−1− λ) Sarrus’ rule.



Solution:
Linear Algebra. The eigenpairs are

(
1,

(
1
1

))
,
(
−1,

(
0
1

))
. Details:

Eigenvector for λ1 = 1.

A− λ1I =

(
1− λ1 0

2 −1− λ1

)
=

(
0 0
2 −2

)
≈
(

1 −1
0 0

)
Swap and multiply rules.

= rref(A− λ1I) Reduced echelon form.

The partial derivative ∂t1v of the general solution x = t1, y = t1 is eigenvector v1 =

(
1
1

)
.

Eigenvector for λ2 = −1.

A− λ2I =

(
1− λ2 0

2 −1− λ2

)
=

(
2 0
2 0

)
≈
(

1 0
0 0

)
Combination and multiply.

= rref(A− λ2I) Reduced echelon form.

The partial derivative ∂t1v of the general solution x = 0, y = t1 is eigenvector v2 =

(
0
1

)
.



2 Example (Computing 3× 3 Eigenpairs)

Find all eigenpairs of the 3× 3 matrix A =

 1 2 0
−2 1 0
0 0 3

.

College Algebra
The eigenvalues are λ1 = 1 + 2i, λ2 = 1− 2i, λ3 = 3. Details:
0 = det(A− λI) Characteristic equation.

=

∣∣∣∣∣∣
1− λ 2 0
−2 1− λ 0
0 0 3− λ

∣∣∣∣∣∣ Subtract λ from the diagonal.

= ((1− λ)2 + 4)(3− λ) Cofactor rule and Sarrus’ rule.

Root λ = 3 is found from the factored form above. The roots λ = 1 ± 2i are found
from the quadratic formula after expanding (1− λ)2 + 4 = 0. Alternatively, take roots
across (λ− 1)2 = −4.



Linear Algebra
The eigenpairs are1 + 2i,

 −i1
0

 ,
1− 2i,

 i
1
0

 ,
3,

 0
0
1

 .
Details appear below.



Eigenvector v1 for λ1 = 1 + 2i

B = A− λ1I

=

 1− λ1 2 0
−2 1− λ1 0
0 0 3− λ1


=

 −2i 2 0
−2 −2i 0
0 0 2− 2i


≈

 i −1 0
1 i 0
0 0 1

 Multiply rule.

≈

 0 0 0
1 i 0
0 0 1

 Combination, factor=−i.

≈

 1 i 0
0 0 1
0 0 0

 Swap rule.

= rref(A− λ1I) Reduced echelon form.

The partial derivative ∂t1v of the general solution x = −it1, y = t1, z = 0 is eigenvector v1 =

 −i1
0

.



Eigenvector v2 for λ2 = 1− 2i

The problem (A− λ2I)v2 = 0 has solution v2 = v1.

To see why, take conjugates across the equation to give (A−λ2I)v2 = 0. ThenA = A
(A is real) and λ1 = λ2 gives (A− λ1I)v2 = 0. Then v2 = v1.

Finally,

v2 = v2 = v1 =

 i
1
0

 .



Eigenvector v3 for λ3 = 3

A− λ3I =

 1− λ3 2 0
−2 1− λ3 0
0 0 3− λ3


=

 −2 2 0
−2 −2 0
0 0 0


≈

 1 −1 0
1 1 0
0 0 0

 Multiply rule.

≈

 1 0 0
0 1 0
0 0 0

 Combination and multiply.

= rref(A− λ3I) Reduced echelon form.

The partial derivative ∂t1v of the general solution x = 0, y = 0, z = t1 is eigenvector

v3 =

 0
0
1

 .


