Systems of Differential Equations Matrix Methods

- Characteristic Equation
- Cayley-Hamilton
 - Cayley-Hamilton Theorem
 - An Example
- The Cayley-Hamilton-Ziebur Method for $\vec{\mathbf{u}}' = A\vec{\mathbf{u}}$
- A Working Rule for Solving $\vec{\mathbf{u}}' = A\vec{\mathbf{u}}$
 - Solving $2 imes 2 \, ec{\mathrm{u}}' = A ec{\mathrm{u}}$
 - Finding \vec{d}_1 and \vec{d}_2
 - A Matrix Method for Finding \vec{d}_1 and \vec{d}_2
- \bullet Other Representations of the Solution \vec{u}
 - Another General Solution of $\vec{\mathrm{u}}' = A\vec{\mathrm{u}}$
 - Change of Basis Equation

Characteristic Equation

Definition 1 (Characteristic Equation)

Given a square matrix A, the characteristic equation of A is the polynomial equation

$$\det(A-rI)=0.$$

The determinant $\det(A - rI)$ is formed by subtracting r from the diagonal of A. The polynomial $p(r) = \det(A - rI)$ is called the **characteristic polynomial**.

- If A is 2×2 , then p(r) is a quadratic.
- If A is 3 imes 3, then p(r) is a cubic.
- The determinant is expanded by the cofactor rule, in order to preserve factorizations.

Characteristic Equation Examples

Create det(A - rI) by subtracting r from the diagonal of A. Evaluate by the cofactor rule.

$$A = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}, \quad p(r) = \begin{vmatrix} 2 - r & 3 \\ 0 & 4 - r \end{vmatrix} = (2 - r)(4 - r)$$
$$A = \begin{pmatrix} 2 & 3 & 4 \\ 0 & 5 & 6 \\ 0 & 0 & 7 \end{pmatrix}, \quad p(r) = \begin{vmatrix} 2 - r & 3 & 4 \\ 0 & 5 - r & 6 \\ 0 & 0 & 7 - r \end{vmatrix} = (2 - r)(5 - r)(7 - r)$$

Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)

A square matrix A satisfies its own characteristic equation.

If
$$p(r)=(-r)^n+a_{n-1}(-r)^{n-1}+\cdots a_0$$
, then the result is the equation $(-A)^n+a_{n-1}(-A)^{n-1}+\cdots +a_1(-A)+a_0I=0,$

where I is the $n \times n$ identity matrix and 0 is the $n \times n$ zero matrix.

The 2 × 2 Case Then $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and for $a_1 = \operatorname{trace}(A)$, $a_0 = \det(A)$ we have $p(r) = r^2 + a_1(-r) + a_0$. The Cayley-Hamilton theorem says $A^2 + a_1(-A) + a_0 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Cayley-Hamilton Example

Assume

$$A=\left(egin{array}{cccc} 2 & 3 & 4 \ 0 & 5 & 6 \ 0 & 0 & 7 \end{array}
ight)$$

Then

$$p(r) = egin{bmatrix} 2-r & 3 & 4 \ 0 & 5-r & 6 \ 0 & 0 & 7-r \end{bmatrix} = (2-r)(5-r)(7-r)$$

and the Cayley-Hamilton Theorem says that

$$(2I-A)(5I-A)(7I-A) = \left(egin{array}{cc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \ \end{array}
ight).$$

Cayley-Hamilton-Ziebur Theorem

Theorem 2 (Cayley-Hamilton-Ziebur Structure Theorem for $\vec{u}' = A\vec{u}$) A component function $u_k(t)$ of the vector solution $\vec{u}(t)$ for $\vec{u}'(t) = A\vec{u}(t)$ is a solution of the *n*th order linear homogeneous constant-coefficient differential equation whose characteristic equation is $\det(A - rI) = 0$.

Meaning: The vector solution $\vec{\mathrm{u}}(t)$ of

$$\vec{\mathrm{u}}' = A\vec{\mathrm{u}}$$

is a vector linear combination of the Euler solution atoms constructed from the roots of the characteristic equation det(A - rI) = 0.

Proof of the Cayley-Hamilton-Ziebur Theorem

Consider the case n = 2, because the proof details are similar in higher dimensions.

$$egin{aligned} &r^2+a_1r+a_0=0 & ext{Expanded characteristic equation} \ &A^2+a_1A+a_0I=0 & ext{Cayley-Hamilton matrix equation} \ &A^2ec{u}+a_1Aec{u}+a_0ec{u}=ec{0} & ext{Right-multiply by }ec{u}=ec{u}(t) \ &ec{u}''=Aec{u}'=Aec{u} & ext{Differentiate }ec{u}'=Aec{u} \ &ec{u}''+a_1ec{u}'+a_0ec{u}=ec{0} & ext{Replace }A^2ec{u}\toec{u}'', Aec{u}\toec{u}' \end{aligned}$$

Then the components x(t), y(t) of $\vec{u}(t)$ satisfy the two differential equations

$$egin{array}{rl} x''(t)+a_1x'(t)+a_0x(t)&=&0,\ y''(t)+a_1y'(t)+a_0y(t)&=&0. \end{array}$$

This system implies that the components of $\vec{u}(t)$ are solutions of the second order DE with characteristic equation $\det(A - rI) = 0$.

Cayley-Hamilton-Ziebur Method

The Cayley-Hamilton-Ziebur Method for $\vec{u}' = A\vec{u}$

Let $\operatorname{atom}_1, \ldots, \operatorname{atom}_n$ denote the Euler solution atoms constructed from the *n*th order characteristic equation $\det(A - rI) = 0$ by Euler's Theorem. The solution of

 $ec{\mathrm{u}}' = A ec{\mathrm{u}}$

is given for some constant vectors $\vec{\mathbf{d}}_1, \ldots, \vec{\mathbf{d}}_n$ by the equation

$$ec{\mathrm{u}}(t) = (\mathrm{atom}_1)ec{\mathrm{d}}_1 + \dots + (\mathrm{atom}_n)ec{\mathrm{d}}_n$$

Warning: The vectors $\vec{d}_1, \ldots, \vec{d}_n$ are not arbitrary; they depend on the n initial conditions $u_k(0) = c_k, k = 1, \ldots, n$.

Cayley-Hamilton-Ziebur Method Conclusions

- Solving $\vec{u}' = A\vec{u}$ is reduced to finding the constant vectors $\vec{d}_1, \ldots, \vec{d}_n$.
- The vectors \vec{d}_j are **not arbitrary**. They are **uniquely determined** by A and $\vec{u}(0)$! A general method to find them is to differentiate the equation

$$ec{\mathrm{u}}(t) = (\mathrm{atom}_1)ec{\mathrm{d}}_1 + \dots + (\mathrm{atom}_n)ec{\mathrm{d}}_n$$

n-1 times, then set t = 0 and replace $\vec{u}^{(k)}(0)$ by $A^k u(0)$ [because $\vec{u}' = A\vec{u}$, $\vec{u}'' = A\vec{u}' = AA\vec{u}$, etc]. The resulting n equations in vector unknowns $\vec{d}_1, \ldots, \vec{d}_n$ can be solved by elimination.

• If all atoms constructed are base atoms constructed from real roots, then each \vec{d}_j is a constant multiple of a real eigenvector of A. Atom e^{rt} corresponds to the eigenpair equation Av = rv.

A 2 × 2 Illustration
Let's solve
$$\vec{u}' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \vec{u}$$
, $u(0) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$.

The characteristic polynomial of the non-triangular matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is

$$igg| egin{array}{ccc} 1-r & 2 \ 2 & 1-r \ \end{array} igg| = (1-r)^2 - 4 = (r+1)(r-3).$$

Euler's theorem implies solution atoms are e^{-t} , e^{3t} .

Then \vec{u} is a vector linear combination of the solution atoms,

$$ec{\mathrm{u}}=e^{-t}ec{\mathrm{d}}_1+e^{3t}ec{\mathrm{d}}_2.$$

How to Find \vec{d}_1 and \vec{d}_2 .

We solve for vectors \vec{d}_1 , \vec{d}_2 in the equation

$$ec{\mathrm{u}}=e^{-t}ec{\mathrm{d}}_1+e^{3t}ec{\mathrm{d}}_2.$$

Advice: Define $\vec{d}_0 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$. Differentiate the above relation. Replace \vec{u}' via $\vec{u}' = A\vec{u}$, then set t = 0 and replace $\vec{u}(0)$ by \vec{d}_0 in the two formulas to obtain the relations

$$egin{array}{rcl} ec{{
m d}}_0 &=& e^0ec{{
m d}}_1 \ + \ e^0ec{{
m d}}_2 \ Aec{{
m d}}_0 &=& -e^0ec{{
m d}}_1 \ + \ 3e^0ec{{
m d}}_2 \end{array}$$

We solve for \vec{d}_1 , \vec{d}_2 by elimination. Adding the equations gives $\vec{d}_0 + A\vec{d}_0 = 4\vec{d}_2$ and then $\vec{d}_0 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ implies

$$egin{array}{rll} ec{{
m d}}_1 &= \, rac{3}{4}ec{{
m d}}_0 - rac{1}{4}Aec{{
m d}}_0 = \left(egin{array}{c} -3/2 \ 3/2 \end{array}
ight), \ ec{{
m d}}_2 &= \, rac{1}{4}ec{{
m d}}_0 + rac{1}{4}Aec{{
m d}}_0 = \left(egin{array}{c} 1/2 \ 1/2 \end{array}
ight). \end{array}$$

Summary of the 2 imes 2 Illustration .

The solution of the dynamical system

$$ec{\mathrm{u}}' = \left(egin{array}{cc} 1 & 2 \ 2 & 1 \end{array}
ight) ec{\mathrm{u}}, \quad \mathrm{u}(0) = \left(egin{array}{cc} -1 \ 2 \end{array}
ight)$$

is a vector linear combination of solution atoms e^{-t} , e^{3t} given by the equation

$$ec{\mathrm{u}}=e^{-t}\left(egin{array}{c} -3/2\ 3/2\end{array}
ight)+e^{3t}\left(egin{array}{c} 1/2\ 1/2\end{array}
ight).$$

Eigenpairs for Free

Each vector appearing in the formula is a scalar multiple of an eigenvector, because eigenvalues -1, 3 are real and distinct. The simplified eigenpairs are

$$\begin{pmatrix} -1, \begin{pmatrix} -1\\ 1 \end{pmatrix} \end{pmatrix}, \quad \begin{pmatrix} 3, \begin{pmatrix} 1\\ 1 \end{pmatrix} \end{pmatrix}.$$

A Matrix Method for Finding \vec{d}_1 and \vec{d}_2

The Cayley-Hamilton-Ziebur Method produces a unique solution for \vec{d}_1 , \vec{d}_2 because the coefficient matrix

$$\left(egin{array}{cc} e^0 & e^0 \ -e^0 & 3e^0 \end{array}
ight)$$

is exactly the Wronskian W of the basis of atoms e^{-t} , e^{3t} evaluated at t = 0. This same fact applies no matter the number of coefficients $\vec{d}_1, \vec{d}_2, \ldots$ to be determined.

Let $\vec{d_0} = \vec{u}(0)$, the initial condition. The answer for $\vec{d_1}$ and $\vec{d_2}$ can be written in matrix form in terms of the transpose W^T of the Wronskian matrix as

$$\langleec{\mathrm{d}}_1|ec{\mathrm{d}}_2
angle=\langleec{\mathrm{d}}_0|Aec{\mathrm{d}}_0
angle(W^T)^{-1}.$$

Symbol $\langle \vec{A} | \vec{B} \rangle$ is the augmented matrix of column vecotrs \vec{A}, \vec{B} .

Solving a 2 imes 2 Initial Value Problem by the Matrix Method

$$\vec{\mathbf{u}}' = A\vec{\mathbf{u}}, \quad \vec{\mathbf{u}}(0) = \begin{pmatrix} -1\\2 \end{pmatrix}, \quad A = \begin{pmatrix} 1&2\\2&1 \end{pmatrix}.$$
Then $\vec{\mathbf{d}}_0 = \begin{pmatrix} -1\\2 \end{pmatrix}, A\vec{\mathbf{d}}_0 = \begin{pmatrix} 1&2\\2&1 \end{pmatrix} \begin{pmatrix} -1\\2 \end{pmatrix} = \begin{pmatrix} 3\\0 \end{pmatrix}$ and
$$\langle \vec{\mathbf{d}}_1 | \vec{\mathbf{d}}_2 \rangle = \begin{pmatrix} -1&3\\2&0 \end{pmatrix} \left(\begin{pmatrix} 1&1\\-1&3 \end{pmatrix}^T \right)^{-1} = \begin{pmatrix} -\frac{3}{2} & \frac{1}{2}\\ \frac{3}{2} & \frac{1}{2} \end{pmatrix}.$$

$$(-\frac{3}{2}) \quad (\frac{1}{2})$$

Extract $\vec{d_1} = \begin{pmatrix} -\frac{1}{2} \\ \frac{3}{2} \end{pmatrix}$, $\vec{d_2} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$. Then the solution of the initial value problem is

$$ec{\mathrm{u}}(t) = e^{-t} \left(egin{array}{c} -rac{3}{2} \ rac{3}{2} \end{array}
ight) + e^{3t} \left(egin{array}{c} rac{1}{2} \ rac{1}{2} \end{array}
ight) = \left(egin{array}{c} -rac{3}{2}e^{-t} + rac{1}{2}e^{3t} \ rac{3}{2}e^{-t} + rac{1}{2}e^{3t} \end{array}
ight).$$

Other Representations of the Solution \vec{u}

Let $y_1(t), \ldots, y_n(t)$ be a solution basis for the *n*th order linear homogeneous constantcoefficient differential equation whose characteristic equation is det(A - rI) = 0.

Consider the solution basis atom_1 , atom_2 , ..., atom_n . Each atom is a linear combination of y_1, \ldots, y_n . Replacing the atoms in the formula

$$ec{\mathrm{u}}(t) = (\mathrm{atom}_1)ec{\mathrm{d}}_1 + \dots + (\mathrm{atom}_n)ec{\mathrm{d}}_n$$

by these linear combinations implies there are constant vectors $\vec{D}_1, \ldots, \vec{D}_n$ such that

$$ec{\mathrm{u}}(t)=y_1(t)ec{\mathrm{D}}_1+\dots+y_n(t)ec{\mathrm{D}}_n$$

Another General Solution of $\vec{\mathrm{u}}' = A\vec{\mathrm{u}}$

Theorem 3 (General Solution) The unique solution of $\vec{u}' = Au$, $\vec{u}(0) = \vec{d}_0$ is

$$\mathbf{u}(t)=\phi_1(t)\mathbf{u}_0+\phi_2(t)A\mathbf{u}_0+\dots+\phi_n(t)A^{n-1}\mathbf{u}_0$$

where ϕ_1, \ldots, ϕ_n are linear combinations of atoms constructed from roots of the characteristic equation $\det(A - rI) = 0$, such that

Wronskian
$$(\phi_1(t),\ldots,\phi_n(t))|_{t=0} = I.$$

Proof of the theorem

Proof: Details will be given for n = 3. The details for arbitrary matrix dimension n is a routine modification of this proof. The Wronskian condition implies ϕ_1 , ϕ_2 , ϕ_3 are independent. Then each atom constructed from the characteristic equation is a linear combination of ϕ_1 , ϕ_2 , ϕ_3 . It follows that the unique solution \vec{u} can be written for some vectors $\vec{d_1}$, $\vec{d_2}$, $\vec{d_3}$ as

$$ec{\mathrm{u}}(t)=\phi_1(t)ec{\mathrm{d}}_1+\phi_2(t)ec{\mathrm{d}}_2+\phi_3(t)ec{\mathrm{d}}_3.$$

Differentiate this equation twice and then set t = 0 in all 3 equations. The relations $\vec{u}' = A\vec{u}$ and $\vec{u}'' = A\vec{u}' = AA\vec{u}$ imply the 3 equations

$$egin{array}{rcl} ec{\mathrm{d}}_0 &=& \phi_1(0)ec{\mathrm{d}}_1 \;+\; \phi_2(0)ec{\mathrm{d}}_2 \;+\; \phi_3(0)ec{\mathrm{d}}_3 \ Aec{\mathrm{d}}_0 &=& \phi_1'(0)ec{\mathrm{d}}_1 \;+\; \phi_2'(0)ec{\mathrm{d}}_2 \;+\; \phi_3'(0)ec{\mathrm{d}}_3 \ A^2ec{\mathrm{d}}_0 \;=\; \phi_1''(0)ec{\mathrm{d}}_1 \;+\; \phi_2''(0)ec{\mathrm{d}}_2 \;+\; \phi_3''(0)ec{\mathrm{d}}_3 \end{array}$$

Because the Wronskian is the identity matrix *I*, then these equations reduce to

$$egin{array}{rcl} ec{{
m d}}_0&=&1ec{{
m d}}_1\ +\ 0ec{{
m d}}_2\ +\ 0ec{{
m d}}_3\ Aec{{
m d}}_0&=&0ec{{
m d}}_1\ +\ 1ec{{
m d}}_2\ +\ 0ec{{
m d}}_3\ Aec{{
m d}}_3\ Aec{{
m d}}_0&=&0ec{{
m d}}_1\ +\ 0ec{{
m d}}_2\ +\ 1ec{{
m d}}_3\ \end{array}$$

which implies $\vec{d_1} = \vec{d_0}$, $\vec{d_2} = A\vec{d_0}$, $\vec{d_3} = A^2\vec{d_0}$. The claimed formula for $\vec{u}(t)$ is established and the proof is complete.

Change of Basis Equation

Illustrated here is the change of basis formula for n = 3. The formula for general n is similar.

Let $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ denote the linear combinations of atoms obtained from the vector formula

$$ig(\phi_1(t),\phi_2(t),\phi_3(t)ig)=ig(\operatorname{atom}_1(t),\operatorname{atom}_2(t),\operatorname{atom}_3(t)ig)\,C^{-1}$$

where

$C = Wronskian(atom_1, atom_2, atom_3)(0).$

The solutions $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$ are called the **principal solutions** of the linear homogeneous constant-coefficient differential equation constructed from the characteristic equation det(A - rI) = 0. They satisfy the initial conditions

Wronskian $(\phi_1, \phi_2, \phi_3)(0) = I$.