Systems of Differential Equations

Matrix Methods

- Characteristic Equation
- Cayley-Hamilton
- Cayley-Hamilton Theorem
- An Example
- The Cayley-Hamilton-Ziebur Method for $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$
- A Working Rule for Solving $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$
- Solving $2 \times 2 \overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$
- Finding $\overrightarrow{\mathbf{d}}_{1}$ and $\overrightarrow{\mathbf{d}}_{2}$
- A Matrix Method for Finding $\overrightarrow{\mathbf{d}}_{1}$ and $\overrightarrow{\mathbf{d}}_{2}$
- Other Representations of the Solution $\overrightarrow{\mathbf{u}}$
- Another General Solution of $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$
- Change of Basis Equation

Characteristic Equation

Definition 1 (Characteristic Equation)

Given a square matrix \boldsymbol{A}, the characteristic equation of \boldsymbol{A} is the polynomial equation

$$
\operatorname{det}(A-r I)=0
$$

The determinant $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r I})$ is formed by subtracting \boldsymbol{r} from the diagonal of \boldsymbol{A}. The polynomial $\boldsymbol{p}(\boldsymbol{r})=\operatorname{det}(\boldsymbol{A}-\boldsymbol{r I})$ is called the characteristic polynomial.

- If \boldsymbol{A} is $\mathbf{2} \times 2$, then $\boldsymbol{p}(\boldsymbol{r})$ is a quadratic.
- If A is 3×3, then $p(r)$ is a cubic.
- The determinant is expanded by the cofactor rule, in order to preserve factorizations.

Characteristic Equation Examples

Create $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r} \boldsymbol{I})$ by subtracting r from the diagonal of \boldsymbol{A}.
Evaluate by the cofactor rule.

$$
\begin{gathered}
A=\left(\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right), \quad p(r)=\left|\begin{array}{cc}
2-r & 3 \\
0 & 4-r
\end{array}\right|=(2-r)(4-r) \\
A=\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 0 & 7
\end{array}\right), \quad p(r)=\left|\begin{array}{ccc}
2-r & 3 & 4 \\
0 & 5-r & 6 \\
0 & 0 & 7-r
\end{array}\right|=(2-r)(5-r)(7-r)
\end{gathered}
$$

Cayley-Hamilton

Theorem 1 (Cayley-Hamilton)

A square matrix \boldsymbol{A} satisfies its own characteristic equation.
If $p(r)=(-r)^{n}+a_{n-1}(-r)^{n-1}+\cdots a_{0}$, then the result is the equation

$$
(-A)^{n}+a_{n-1}(-A)^{n-1}+\cdots+a_{1}(-A)+a_{0} I=0
$$

where \boldsymbol{I} is the $\boldsymbol{n} \times \boldsymbol{n}$ identity matrix and $\mathbf{0}$ is the $\boldsymbol{n} \times \boldsymbol{n}$ zero matrix.
The 2×2 Case
Then $A=\left(\begin{array}{ll}\boldsymbol{a} & \boldsymbol{b} \\ \boldsymbol{c} & \boldsymbol{d}\end{array}\right)$ and for $\boldsymbol{a}_{1}=\operatorname{trace}(A), \boldsymbol{a}_{0}=\operatorname{det}(A)$ we have $p(r)=$ $r^{2}+a_{1}(-r)+a_{0}$. The Cayley-Hamilton theorem says

$$
A^{2}+a_{1}(-A)+a_{0}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Cayley-Hamilton Example

Assume

$$
A=\left(\begin{array}{lll}
2 & 3 & 4 \\
0 & 5 & 6 \\
0 & 0 & 7
\end{array}\right)
$$

Then

$$
p(r)=\left|\begin{array}{ccc}
2-r & 3 & 4 \\
0 & 5-r & 6 \\
0 & 0 & 7-r
\end{array}\right|=(2-r)(5-r)(7-r)
$$

and the Cayley-Hamilton Theorem says that

$$
(2 I-A)(5 I-A)(7 I-A)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Cayley-Hamilton-Ziebur Theorem

Theorem 2 (Cayley-Hamilton-Ziebur Structure Theorem for $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$) A component function $\boldsymbol{u}_{k}(\boldsymbol{t})$ of the vector solution $\overrightarrow{\mathbf{u}}(t)$ for $\overrightarrow{\mathbf{u}}^{\prime}(\boldsymbol{t})=\boldsymbol{A} \overrightarrow{\mathbf{u}}(\boldsymbol{t})$ is a solution of the nth order linear homogeneous constant-coefficient differential equation whose characteristic equation is $\operatorname{det}(A-r I)=0$.

Meaning: The vector solution $\overrightarrow{\mathbf{u}}(t)$ of

$$
\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathbf{u}}
$$

is a vector linear combination of the Euler solution atoms constructed from the roots of the characteristic equation $\operatorname{det}(A-r I)=0$.

Proof of the Cayley-Hamilton-Ziebur Theorem

Consider the case $\boldsymbol{n}=2$, because the proof details are similar in higher dimensions.

$$
\begin{array}{ll}
r^{2}+a_{1} r+a_{0}=0 & \text { Expanded characteristic equatior } \\
A^{2}+a_{1} A+a_{0} I=0 & \text { Cayley-Hamilton matrix equation } \\
A^{2} \overrightarrow{\mathbf{u}}+a_{1} A \overrightarrow{\mathbf{u}}+a_{0} \overrightarrow{\mathbf{u}}=\overrightarrow{0} & \text { Right-multiply by } \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}(t) \\
\overrightarrow{\mathbf{u}}^{\prime \prime}=\boldsymbol{A}^{\prime}=\boldsymbol{A}^{2} \overrightarrow{\mathbf{u}} & \text { Differentiate } \overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}} \\
\overrightarrow{\mathbf{u}}^{\prime \prime}+a_{1} \overrightarrow{\mathbf{u}}^{\prime}+a_{0} \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{0}} & \text { Replace } A^{2} \overrightarrow{\mathbf{u}} \rightarrow \overrightarrow{\mathbf{u}}^{\prime \prime}, \boldsymbol{A} \overrightarrow{\mathbf{u}} \rightarrow \overrightarrow{\mathbf{u}}^{\prime}
\end{array}
$$

Then the components $\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t})$ of $\overrightarrow{\mathbf{u}}(\boldsymbol{t})$ satisfy the two differential equations

$$
\begin{aligned}
& x^{\prime \prime}(t)+a_{1} x^{\prime}(t)+a_{0} x(t)=0 \\
& y^{\prime \prime}(t)+a_{1} y^{\prime}(t)+a_{0} y(t)=0
\end{aligned}
$$

This system implies that the components of $\overrightarrow{\mathbf{u}}(t)$ are solutions of the second order DE with characteristic equation $\operatorname{det}(\boldsymbol{A}-r I)=0$.

Cayley-Hamilton-Ziebur Method

The Cayley-Hamilton-Ziebur Method for $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$
Let atom ${ }_{1}, \ldots$, atom $_{n}$ denote the Euler solution atoms constructed from the \boldsymbol{n} th order characteristic equation $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r I})=0$ by Euler's Theorem. The solution of

$$
\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathbf{u}}
$$

is given for some constant vectors $\overrightarrow{\mathrm{d}}_{1}, \ldots, \overrightarrow{\mathrm{~d}}_{n}$ by the equation

$$
\overrightarrow{\mathbf{u}}(t)=\left(\operatorname{atom}_{1}\right) \overrightarrow{\mathrm{d}}_{1}+\cdots+\left(\operatorname{atom}_{n}\right) \overrightarrow{\mathrm{d}}_{n}
$$

Warning: The vectors $\overrightarrow{\mathbf{d}}_{1}, \ldots, \overrightarrow{\mathbf{d}}_{n}$ are not arbitrary; they depend on the \boldsymbol{n} initial conditions $u_{k}(0)=c_{k}, k=1, \ldots, n$.

Cayley-Hamilton-Ziebur Method Conclusions

\qquad

- Solving $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$ is reduced to finding the constant vectors $\overrightarrow{\mathbf{d}}_{1}, \ldots, \overrightarrow{\mathrm{~d}}_{n}$.
- The vectors $\overrightarrow{\mathrm{d}}_{j}$ are not arbitrary. They are uniquely determined by \boldsymbol{A} and $\overrightarrow{\mathbf{u}}(0)$! A general method to find them is to differentiate the equation

$$
\overrightarrow{\mathrm{u}}(t)=\left(\text { atom }_{1}\right) \overrightarrow{\mathrm{d}}_{1}+\cdots+\left(\text { atom }_{n}\right) \overrightarrow{\mathrm{d}}_{n}
$$

$n-1$ times, then set $t=0$ and replace $\overrightarrow{\mathbf{u}}^{(k)}(0)$ by $\boldsymbol{A}^{k} \mathbf{u}(0)$ [because $\overrightarrow{\mathbf{u}}^{\prime}=$ $\boldsymbol{A} \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{u}}^{\prime \prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \boldsymbol{A} \overrightarrow{\mathbf{u}}$, etc]. The resulting \boldsymbol{n} equations in vector unknowns $\overrightarrow{\mathrm{d}}_{1}, \ldots, \overrightarrow{\mathrm{~d}}_{n}$ can be solved by elimination.

- If all atoms constructed are base atoms constructed from real roots, then each $\overrightarrow{\mathrm{d}}_{j}$ is a constant multiple of a real eigenvector of \boldsymbol{A}. Atom $\boldsymbol{e}^{r t}$ corresponds to the eigenpair equation $A \mathrm{v}=r \mathrm{v}$.

A 2×2 Illustration

Let's solve $\overrightarrow{\mathbf{u}}^{\prime}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right) \overrightarrow{\mathbf{u}}, \quad \mathbf{u}(0)=\binom{-1}{2}$.
The characteristic polynomial of the non-triangular matrix $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ is

$$
\left|\begin{array}{cc}
1-r & 2 \\
2 & 1-r
\end{array}\right|=(1-r)^{2}-4=(r+1)(r-3) .
$$

Euler's theorem implies solution atoms are $e^{-t}, e^{3 t}$.
Then $\overrightarrow{\mathbf{u}}$ is a vector linear combination of the solution atoms,

$$
\overrightarrow{\mathbf{u}}=e^{-t} \overrightarrow{\mathbf{d}}_{1}+e^{3 t} \overrightarrow{\mathbf{d}}_{2}
$$

How to Find $\overrightarrow{\mathrm{d}}_{1}$ and $\overrightarrow{\mathrm{d}}_{2}$

We solve for vectors $\overrightarrow{\mathrm{d}}_{1}, \overrightarrow{\mathrm{~d}}_{2}$ in the equation

$$
\overrightarrow{\mathbf{u}}=e^{-t} \overrightarrow{\mathbf{d}}_{1}+e^{3 t} \overrightarrow{\mathbf{d}}_{2} .
$$

Advice: Define $\overrightarrow{\mathbf{d}}_{0}=\binom{-1}{2}$. Differentiate the above relation. Replace $\overrightarrow{\mathbf{u}}^{\prime}$ via $\overrightarrow{\mathbf{u}}^{\prime}=$ $\boldsymbol{A} \overrightarrow{\mathrm{u}}$, then set $\boldsymbol{t}=\mathbf{0}$ and replace $\overrightarrow{\mathbf{u}}(0)$ by $\overrightarrow{\mathrm{d}}_{0}$ in the two formulas to obtain the relations

$$
\begin{aligned}
\overrightarrow{\mathrm{d}}_{0} & =e^{0} \overrightarrow{\mathrm{~d}}_{1}+e^{0} \overrightarrow{\mathrm{~d}}_{2} \\
A \overrightarrow{\mathrm{~d}}_{0} & =-e^{0} \overrightarrow{\mathrm{~d}}_{1}+3 e^{0} \overrightarrow{\mathrm{~d}}_{2}
\end{aligned}
$$

We solve for $\overrightarrow{\mathrm{d}}_{1}, \overrightarrow{\mathrm{~d}}_{2}$ by elimination. Adding the equations gives $\overrightarrow{\mathrm{d}}_{0}+A \overrightarrow{\mathrm{~d}}_{0}=4 \overrightarrow{\mathrm{~d}}_{2}$ and then $\overrightarrow{\mathrm{d}}_{0}=\binom{-1}{2}$ implies

$$
\begin{aligned}
& \overrightarrow{\mathrm{d}}_{1}=\frac{3}{4} \overrightarrow{\mathrm{~d}}_{0}-\frac{1}{4} \boldsymbol{A} \overrightarrow{\mathrm{~d}}_{0}=\binom{-3 / 2}{3 / 2}, \\
& \overrightarrow{\mathrm{~d}}_{2}=\frac{1}{4} \overrightarrow{\mathrm{~d}}_{0}+\frac{1}{4} \boldsymbol{A} \overrightarrow{\mathrm{~d}}_{0}=\binom{1 / 2}{1 / 2}
\end{aligned}
$$

Summary of the 2×2 Illustration

The solution of the dynamical system

$$
\overrightarrow{\mathbf{u}}^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \overrightarrow{\mathbf{u}}, \quad \mathbf{u}(0)=\binom{-1}{2}
$$

is a vector linear combination of solution atoms $e^{-t}, e^{3 t}$ given by the equation

$$
\overrightarrow{\mathrm{u}}=e^{-t}\binom{-3 / 2}{3 / 2}+e^{3 t}\binom{1 / 2}{1 / 2}
$$

Eigenpairs for Free
Each vector appearing in the formula is a scalar multiple of an eigenvector, because eigenvalues $-1,3$ are real and distinct. The simplified eigenpairs are

$$
\left(-1,\binom{-1}{1}\right), \quad\left(3,\binom{1}{1}\right)
$$

A Matrix Method for Finding $\overrightarrow{\mathrm{d}}_{1}$ and $\overrightarrow{\mathrm{d}}_{2}$

The Cayley-Hamilton-Ziebur Method produces a unique solution for $\overrightarrow{\mathbf{d}}_{1}, \overrightarrow{\mathbf{d}}_{2}$ because the coefficient matrix

$$
\left(\begin{array}{rr}
e^{0} & e^{0} \\
-e^{0} & 3 e^{0}
\end{array}\right)
$$

is exactly the Wronskian \boldsymbol{W} of the basis of atoms $e^{-t}, e^{3 t}$ evaluated at $\boldsymbol{t}=0$. This same fact applies no matter the number of coefficients $\overrightarrow{\mathbf{d}}_{1}, \overrightarrow{\mathbf{d}}_{2}, \ldots$ to be determined.
Let $\vec{d}_{0}=\vec{u}(0)$, the initial condition. The answer for $\overrightarrow{\mathrm{d}}_{1}$ and $\overrightarrow{\mathrm{d}}_{2}$ can be written in matrix form in terms of the transpose \boldsymbol{W}^{T} of the Wronskian matrix as

$$
\left\langle\overrightarrow{\mathrm{d}}_{1} \mid \overrightarrow{\mathrm{d}}_{2}\right\rangle=\left\langle\overrightarrow{\mathrm{d}}_{0} \mid \boldsymbol{A} \overrightarrow{\mathrm{d}}_{0}\right\rangle\left(\boldsymbol{W}^{T}\right)^{-1} .
$$

Symbol $\langle\vec{A} \mid \vec{B}\rangle$ is the augmented matrix of column vecotrs \vec{A}, \vec{B}.

Solving a 2×2 Initial Value Problem by the Matrix Method

$$
\overrightarrow{\mathbf{u}}^{\prime}=A \overrightarrow{\mathrm{u}}, \quad \overrightarrow{\mathbf{u}}(0)=\binom{-1}{2}, \quad A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

Then $\overrightarrow{\mathrm{d}}_{0}=\binom{-1}{2}, A \overrightarrow{\mathrm{~d}}_{0}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\binom{-1}{2}=\binom{3}{0}$ and

$$
\left\langle\overrightarrow{\mathrm{d}}_{1} \mid \overrightarrow{\mathrm{d}}_{2}\right\rangle=\left(\begin{array}{rr}
-1 & 3 \\
2 & 0
\end{array}\right)\left(\left(\begin{array}{rr}
1 & 1 \\
-1 & 3
\end{array}\right)^{T}\right)^{-1}=\left(\begin{array}{rr}
-\frac{3}{2} & \frac{1}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right)
$$

Extract $\overrightarrow{d_{1}}=\binom{-\frac{3}{2}}{\frac{3}{2}}, \overrightarrow{d_{2}}=\binom{\frac{1}{2}}{\frac{1}{2}}$. Then the solution of the initial value problem is

$$
\overrightarrow{\mathbf{u}}(t)=e^{-t}\binom{-\frac{3}{2}}{\frac{3}{2}}+e^{3 t}\binom{\frac{1}{2}}{\frac{1}{2}}=\binom{-\frac{3}{2} e^{-t}+\frac{1}{2} e^{3 t}}{\frac{3}{2} e^{-t}+\frac{1}{2} e^{3 t}}
$$

Other Representations of the Solution $\overrightarrow{\mathbf{u}}$

Let $\boldsymbol{y}_{1}(\boldsymbol{t}), \ldots, \boldsymbol{y}_{n}(\boldsymbol{t})$ be a solution basis for the \boldsymbol{n} th order linear homogeneous constantcoefficient differential equation whose characteristic equation is $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r} \boldsymbol{I})=0$.

Consider the solution basis atom $_{1}$, atom $_{2}, \ldots$, atom $_{n}$. Each atom is a linear combination of $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$. Replacing the atoms in the formula

$$
\overrightarrow{\mathbf{u}}(t)=\left(\operatorname{atom}_{1}\right) \overrightarrow{\mathrm{d}}_{1}+\cdots+\left(\text { atom }_{n}\right) \overrightarrow{\mathrm{d}}_{n}
$$

by these linear combinations implies there are constant vectors $\overrightarrow{\mathbf{D}}_{1}, \ldots, \overrightarrow{\mathbf{D}}_{n}$ such that

$$
\overrightarrow{\mathbf{u}}(t)=y_{1}(t) \overrightarrow{\mathrm{D}}_{1}+\cdots+y_{n}(t) \overrightarrow{\mathrm{D}}_{n}
$$

Another General Solution of $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$
Theorem 3 (General Solution)
The unique solution of $\overrightarrow{\mathbf{u}}^{\prime}=A \mathbf{u}, \overrightarrow{\mathbf{u}}(0)=\overrightarrow{\mathrm{d}}_{0}$ is

$$
\mathbf{u}(t)=\phi_{1}(t) \mathbf{u}_{0}+\phi_{2}(t) A \mathbf{u}_{0}+\cdots+\phi_{n}(t) A^{n-1} \mathbf{u}_{0}
$$

where $\phi_{1}, \ldots, \phi_{n}$ are linear combinations of atoms constructed from roots of the characteristic equation $\operatorname{det}(\boldsymbol{A}-r \boldsymbol{I})=0$, such that

$$
\left.\operatorname{Wronskian}\left(\phi_{1}(t), \ldots, \phi_{n}(t)\right)\right|_{t=0}=I
$$

Proof of the theorem

Proof: Details will be given for $\boldsymbol{n}=\mathbf{3}$. The details for arbitrary matrix dimension \boldsymbol{n} is a routine modification of this proof. The Wronskian condition implies $\phi_{1}, \phi_{2}, \phi_{3}$ are independent. Then each atom constructed from the characteristic equation is a linear combination of $\phi_{1}, \phi_{2}, \phi_{3}$. It follows that the unique solution $\overrightarrow{\mathrm{u}}$ can be written for some vectors $\overrightarrow{\mathrm{d}}_{1}, \overrightarrow{\mathrm{~d}}_{2}, \overrightarrow{\mathrm{~d}}_{3}$ as

$$
\overrightarrow{\mathrm{u}}(t)=\phi_{1}(t) \overrightarrow{\mathrm{d}}_{1}+\phi_{2}(t) \overrightarrow{\mathrm{d}}_{2}+\phi_{3}(t) \overrightarrow{\mathrm{d}}_{3}
$$

Differentiate this equation twice and then set $t=0$ in all $\mathbf{3}$ equations. The relations $\overrightarrow{\mathbf{u}}^{\prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{u}}^{\prime \prime}=\boldsymbol{A} \overrightarrow{\mathbf{u}}^{\prime}=$ $A \boldsymbol{A} \overrightarrow{\mathrm{u}}$ imply the $\mathbf{3}$ equations

$$
\begin{aligned}
\overrightarrow{\mathrm{d}}_{0} & =\phi_{1}(0) \overrightarrow{\mathrm{d}}_{1}+\phi_{2}(0) \overrightarrow{\mathrm{d}}_{2}+\phi_{3}(0) \overrightarrow{\mathrm{d}}_{3} \\
A \overrightarrow{\mathrm{~d}}_{0} & =\phi_{1}^{\prime}(0) \overrightarrow{\mathrm{d}}_{1}+\phi_{2}^{\prime}(0) \overrightarrow{\mathrm{d}}_{2}+\phi_{3}^{\prime}(0) \overrightarrow{\mathrm{d}}_{3} \\
A^{2} \overrightarrow{\mathrm{~d}}_{0} & =\phi_{1}^{\prime \prime}(0) \overrightarrow{\mathrm{d}}_{1}+\phi_{2}^{\prime \prime}(0) \overrightarrow{\mathrm{d}}_{2}+\phi_{3}^{\prime \prime}(0) \overrightarrow{\mathrm{d}}_{3}
\end{aligned}
$$

Because the Wronskian is the identity matrix I, then these equations reduce to

$$
\begin{aligned}
\overrightarrow{\mathrm{d}}_{0} & =1 \overrightarrow{\mathrm{~d}}_{1}+0 \overrightarrow{\mathrm{~d}}_{2}+0 \overrightarrow{\mathrm{~d}}_{3} \\
A \overrightarrow{\mathrm{~d}}_{0} & =0 \overrightarrow{\mathrm{~d}}_{1}+1 \overrightarrow{\mathrm{~d}}_{2}+0 \overrightarrow{\mathrm{~d}}_{3} \\
A^{2} \overrightarrow{\mathrm{~d}}_{0} & =0 \overrightarrow{\mathrm{~d}}_{1}+0 \overrightarrow{\mathrm{~d}}_{2}+1 \overrightarrow{\mathrm{~d}}_{3}
\end{aligned}
$$

which implies $\overrightarrow{\mathrm{d}}_{1}=\overrightarrow{\mathrm{d}}_{0}, \overrightarrow{\mathrm{~d}}_{2}=A \overrightarrow{\mathrm{~d}}_{0}, \overrightarrow{\mathrm{~d}}_{3}=A^{2} \overrightarrow{\mathrm{~d}}_{0}$.
The claimed formula for $\overrightarrow{\mathbf{u}}(t)$ is established and the proof is complete.

Change of Basis Equation

\qquad
Illustrated here is the change of basis formula for $\boldsymbol{n}=3$. The formula for general \boldsymbol{n} is similar.
Let $\phi_{1}(t), \phi_{2}(t), \phi_{3}(t)$ denote the linear combinations of atoms obtained from the vector formula

$$
\left(\phi_{1}(t), \phi_{2}(t), \phi_{3}(t)\right)=\left(\operatorname{atom}_{1}(t), \operatorname{atom}_{2}(t), \operatorname{atom}_{3}(t)\right) C^{-1}
$$

where

$$
C=\text { Wronskian }\left(\operatorname{atom}_{1}, \text { atom }_{2}, \text { atom }_{3}\right)(0)
$$

The solutions $\phi_{1}(t), \phi_{2}(t), \phi_{3}(t)$ are called the principal solutions of the linear homogeneous constant-coefficient differential equation constructed from the characteristic equation $\operatorname{det}(\boldsymbol{A}-\boldsymbol{r} \boldsymbol{I})=0$. They satisfy the initial conditions

$$
\operatorname{Wronskian}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)(0)=I
$$

