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Math 2250 Extra Credit Maple Project 5: Linear Algebra
S2015

Extra credit Maple lab 5 has four problems: L5-1, L5-2, L5-3, L5-4. Examples of the maple coding required appears in
five examples at the end of this document.

References: Code in maple appears in 2250mapleL5-S2015.txt at URL http://www.math.utah.edu/~gustafso/.
This document: 2250mapleL5-S2015.pdf.

Problem L5-1. (Matrix Algebra)

Define A =

 1 2 3
4 5 6
7 8 9

, B =

 2 1 0
1 2 1
0 1 2

, v =

 1
2
3

 and w =

 −1
4
1

. Create a worksheet in maple which

states this problem in text, then defines the four objects. The worksheet should contain text, maple code and displays.
Continue with this worksheet to answer (1)–(7) below. Submit problem L5.1 as a worksheet printed on 8.5 by 11 inch
paper. See Example 1 for maple commands.

(1) Compute AB and BA. Are they the same?

(2) Compute A+B and B +A. Are they the same?

(3) Let C = A+B. Compare C2 to A2 + 2AB +B2. Explain why they are different.

(4) Compute transposes C1 = (AB)T , C2 = AT and C3 = BT . Find a matrix equation for C1 in terms of C2 and C3.
Verify the equation.

(5) Solve for X in BX = v by maple commands linalg[rref], linalg[linsolve], then by inversion X = A−1b.

(6) Solve AY = v for Y. Do an answer check using linalg[linsolve].

(7) Solve AZ = w. Explain your answer using the three possibilities for a linear system. Discuss the possible maple
reports for (1) no solution case, (2) unique solution, (3) infinitely many solutions.

Problem L5-2. (Independent Columns)

Let A =


1 1 1 2 6
2 3 −2 1 −3
0 1 −4 −3 −15
1 2 −3 −1 −9

.

Find independent vectors which have the same span as the columns of A using the following methods.

Method 1. Find the pivot columns of A. See Example 2.

Method 2. The maple command linalg[colspace](A) .

The first method is equivalent to finding a largest set of independent vectors from the list of 5 vectors formed from the
columns of A. The answer is a basis of 2 vectors. The span of these 2 vectors equals the span of the 5 column vectors of
A. The second method finds another basis of 2 vectors, which is generally different, but equivalent in the sense described
in the next part.

Problem L5-3. (Equivalent Bases)

Let

v1 =


1
2
0
1

 , v2 =


1
3
1
2

 , w1 =


1
0
−2
−1

 , w2 =


0
1
1
1

 .

Verify that the two bases B1 = {v1,v2} and B2 = {w1,w2} are equivalent. This means that each vector in B1 is a
linear combination of the vectors in B2, and conversely, that each vector in B2 is a linear combination of the vectors in
B1. Briefly,

span{v1,v2} = span{w1,w2}.

Staple this page on top of the maple work sheets.



Problem L5-4. (Matrix Equations)

Let A =

 8 10 3
−3 −5 −3
−4 −4 1

, T =

 1 0 0
0 −2 0
0 0 5

. Let P denote a 3× 3 matrix. Define λ1 = 1, λ2 = −2 and λ3 = 5.

Assume the following result:

Lemma 1. The equality AP = PT holds if and only if the columns v1, v2, v3 of P satisfy Av1 = λ1v1,
Av2 = λ2v2, Av3 = λ3v3. [proved after Example 5]

(a) Determine three specific columns for P such that det(P ) 6= 0 and AP = PT . These columns contain only numbers
– no symbols allowed! Infinitely many answers are possible. See Example 5 for the maple method that determines a
column of P .

(b) After reporting the three columns, check the answer by computing AP − PT (it should be zero) and det(P ) (it
should be nonzero).

Example 1. Let A =

 1 2 3
2 −1 1
3 0 −1

 and b =

 9
8
3

. Create a maple work sheet. Define and display matrix A

and vector b. Then compute

(1) The inverse of A.

(2) The augmented matrix C = aug(A,b).

(3) The reduced row echelon form R = rref(C).

(4) The column X of R which solves AX = b.

(5) The matrix A3.

(6) The transpose of A.

(7) The matrix A− 3A2.

(8) The solution X of AX = b by two methods different than (4).

(9) Find a matrix F such that Fx = b has no solution. Explain why linsolve prints nothing.

(10) Compute ATA, (ATA)−1, A−1(A−1)T .

Solution: A lab instructor or classmate can help you to create a blank work sheet in maple, enter code and print the
work sheet. The code to be entered into the work sheet appears below.

A:=Matrix([[1,2,3],[2,-1,1],[3,0,-1]]);

b:=Vector([9,8,3]);

print("(1)"); A^(-1);

print("(2)"); C:=<A|b>;

print("(3)"); R:=linalg[rref](C);

print("(3) Alternate");

R:=LinearAlgebra[ReducedRowEchelonForm](C);

print("(4)"); R[1..3,4]; # Select col=4 from 3x4 matrix R

print("(4) Alternate"); X:=LinearAlgebra[Column](R,4);

print("(5)"); A^3;

print("(6)"); A^+;

print("(7)"); A-3*A^2;

print("(8)"); X:=A^(-1).b;X:=LinearAlgebra[LinearSolve](A,b);

# (9): linsolve prints nothing: a signal equation "0=3".

print("(9)"); F:=Matrix([[1,2,3],[2,-1,1],[0,0,0]]);linalg[linsolve](F,b);

<F|b>; # Visual explanation of the signal equation

print("(10)"); A^+ . A; (A^+.A)^(-1); A^(-1) . (A^(-1))^+;

Example 2. Let A =


1 1 1 2 6
2 3 −2 1 −3
3 5 −5 1 −8
4 3 8 2 3

.
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(1) Find a basis for the column space of A. This means: find a largest list of independent columns of A.

(2) Find a basis for the row space of A.

(3) Find a basis for the nullspace of A. This is the list of vector partials ∂t1x, ∂t2x, . . . applied to the general solution
x of Ax = 0, which is obtained from the last frame algorithm.

(4) Find rank(A) and nullity(A). They are the number of lead variables and the number of free variables for the
problem Ax = 0, respectively.

(5) Find the dimensions of the nullspace, row space and column space of A.

Solution: The theory applied: The columns of B corresponding to the leading ones in rref(B) are independent and
form a basis for the column space of B. These columns are called the pivot columns of B. The meaning is

span{all columns of B} = span{pivot columns of B}.

A list of vectors is called a basis provided it is independent and spans.

Results for the row space of A are obtained by replacing B by the transpose of A. In particular, the row space of A is
spanned by the pivot columns of B = AT .

The maple code which applies is

A:=Matrix([[ 1, 1, 1, 2, 6],

[ 2, 3,-2, 1,-3],

[ 3, 5,-5, 1,-8],

[ 4, 3, 8, 2, 3]]);

print("(1)"); C:=linalg[rref](A); # leading ones in columns 1,2,4

BASIScolumnspace=A[1..4,1],A[1..4,2],A[1..4,4];

print("(2)"); F:=linalg[rref](A^+); # leading ones in columns 1,2,3

BASISrowspace=row(A,1),row(A,2),row(A,3);

print("(3)"); linalg[nullspace](A); linalg[linsolve](A,Vector([0,0,0,0]));

print("(4)"); RANK=linalg[rank](A);

NULLITY=linalg[coldim](A)-linalg[rank](A);

print("(5)"); DIMnullspace=linalg[coldim](A)-linalg[rank](A);

DIMrowspace=linalg[rank](A);

DIMcolumnspace=linalg[rank](A);

Example 3. Let A =


1 1 1 2 6
2 3 −2 1 −3
3 5 −5 1 −8
4 3 8 2 3

. Verify that the following column space bases of A are equivalent.

v1 =


1
2
3
4

 , v2 =


1
3
5
3

 , v3 =


2
1
1
2

 ,

w1 =


1
0
0
−3

 , w2 =


0
1
0

17

 , w3 =


0
0
1
−9

 .

Solution: We will use this result:

Lemma 2. Bases {v1,v2,v3} and {w1,w2,w3} are equivalent bases if and only if the augmented matrices F =
aug(v1,v2,v3), G = aug(w1,w2,w3) and H = aug(F,G) satisfy the rank condition rank(F ) = rank(G) = rank(H) =
3.

The proof appears below.

The maple code which applies is
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A:=Matrix([[ 1, 1, 1, 2, 6],

[ 2, 3,-2, 1,-3],

[ 3, 5,-5, 1,-8],

[ 4, 3, 8, 2, 3]]);

v1:=Vector([1,2,3,4]); v2:=Vector([1,3,5,3]); v3:=Vector([2,1,1,2]);

w1:=Vector([1,0,0,-3]); w2:=Vector([0,1,0,17]); w3:=Vector([0,0,1,-9]);

F:=<v1|v2|v3>;

G:=<w1|w2|w3>;

H:=<F|G>;

linalg[rank](F); linalg[rank](G); linalg[rank](H);

Example 4. The two bases in the example were discovered from the maple code

A:=Matrix([[ 1, 1, 1, 2, 6],

[ 2, 3,-2, 1,-3],

[ 3, 5,-5, 1,-8],

[ 4, 3, 8, 2, 3]]);

linalg[rref](A); # pivot cols 1,2,4

v1:=A[1..4,1]; v2:=A[1..4,2]; v3:=A[1..4,4];# Name the columns

linalg[rref](A^+); # pivot cols 1,2,3

w1:=A[1,1..5]; w2:=A[2,1..5]; w3:=A[3,1..5];# Name the rows

Proof of Lemma 2.

Proof: Let’s justify part of the test, showing only half the proof: rank(F ) = rank(G) = rank(H) = n implies the
bases are equivalent.

The equation rref(F ) = EF holds for E a product of elementary matrices. Then rref(H) = EH has to have n leading
ones, because of F in the first n columns, and the remaining rows of rref(H) are zero, because rank(H) = n. Therefore,
the first n columns of H = aug(F,G) are the pivot columns of H. The non-pivots of H are just the columns of G, and
by the pivot theory, they are linear combinations of the pivot columns, namely, the columns of F . We can multiply H
by a permutation matrix P which effectively swaps F and G. Already, HP has the n independent columns of F , so its
rank is at least n. But its other columns are linear combinations of these columns, so the rank is exactly n. Now we
argue by symmetry that the columns of F are linear combinations of the columns of G, using HP instead of H.

The first half of the proof is complete. The other half is left to the reader.

Example 5. Let A =

 1 2 3
2 −1 1
3 0 0

. Solve the equation Ax = −3x for x.

Solution. Let λ = −3. The idea is to write the equation Ax = λx as a homogeneous problem (A− λI)x = 0.

The trick is to move λx from the RHS to the LHS of the equation, then re-write λx as λIx, where I is the identity
matrix. Then x is a common factor, and the matrix equation can be written as (Ax− λIx = 0. Then (A− λI)x = 0.

Define B = A−λI. The homogeneous equation Bx = 0 always has the solution x = 0. It has a nonzero solution x if and
only if there are infinitely many solutions, in which case the solutions are found by a frame sequence to rref(B). The
maple details appear below. The basis vectors for Bx = 0 are obtained in the usual way, by taking partial derivatives
on the general solution with respect to the symbols t1, t2, . . . . In this case, there is just one basis vector −2

1
2

 .

A:=Matrix([[1,2,3],[2,-1,1],[3,0,0]]);

B:=A-(-3)*<1,0,0|0,1,0|0,0,1>;

linalg[linsolve](B,Vector([0,0,0]));

# ans: Vector([-2*t,1*t,2*t]), maple replaces t by _t_1

# Basis == partial on t == Vector([-2,1,2])

Proof of Lemma 1. Define r1 = 1, r2 = −2, r3 = 5. Assume AP = PT , P = aug(v1,v2,v3) and T = diag(r1, r2, r3).
The definition of matrix multiplication implies that AP = aug(Av1, Av2, Av3) and PT = aug(r1v1, r2v2, r3v3). Then
AP = PT holds if and only if the columns of the two matrices match, which is equivalent to the three equations
Av1 = r1v1, Av2 = r2v2, Av3 = r3v3. The proof is complete.

End of Maple Lab 5 Linear Algebra.
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