\qquad

Math 2250 Extra Credit Problems Chapter 8 S2015

Submitted work. Please submit one stapled package with this sheet on top. Kindly check-mark the problems submitted and label the paper Extra Credit. Label each solved problem with its corresponding problem number, e.g., Xc10.3-20.

Problem Xc8.1-4. (Fundamental Matrix)

Find a fundamental matrix $\Phi(t)$ by each of the following methods. Report $e^{A t}=\Phi(t) \Phi(0)^{-1}$, using one of the answers for Φ.

$$
\mathbf{u}^{\prime}=A \mathbf{u}, \quad A=\left(\begin{array}{rr}
2 & -5 \\
0 & 1
\end{array}\right), \quad \mathbf{u}=\binom{x(t)}{y(t)}
$$

(a) Cayley-Hamilton method. Compute the characteristic equation $\operatorname{det}(A-\lambda I)=0$. Find two atoms from the roots of this equation. Then $x(t)$ is a linear combination of these atoms. The first equation $x^{\prime}=2 x-5 y$ can be solved for y to find the second answer.
(b) Eigenanalysis method. Find the eigenpairs $\left(\lambda_{1}, \mathbf{v}_{1}\right),\left(\lambda_{2}, \mathbf{v}_{2}\right)$ of A. Let Φ have columns $e^{\lambda_{1} t} \mathbf{v}_{1}, e^{\lambda_{2} t} \mathbf{v}_{2}$.

Problem Xc8.1-12. (Putzer's Method)

The exponential matrix $e^{A t}$ can be found in the 2×2 case from Putzer's formula

$$
e^{A t}=e^{\lambda_{1} t} I+\frac{e^{\lambda_{1} t}-e^{\lambda_{2} t}}{\lambda_{1}-\lambda_{2}}\left(A-\lambda_{1} I\right)
$$

If the roots λ_{1}, λ_{2} of $\operatorname{det}(A-\lambda I)=0$ are equal, then compute the Newton quotient factor by L'Hopital's rule, limiting $\lambda_{2} \rightarrow \lambda_{1}$ [λ_{1}, t fixed]. If the roots are complex, then take the real part of the right side of the equation.

Compute from Putzer's formula $e^{A t}$ for the following cases.
(a) $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Answer $e^{A t}=\left(\begin{array}{rr}e^{t} & 0 \\ 0 & e^{2 t}\end{array}\right)$.
(b) $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
(c) $A=\left(\begin{array}{rr}0 & 1 \\ -1 & -2\end{array}\right)$.
(d) $A=\left(\begin{array}{ll}2 & -5 \\ 4 & -2\end{array}\right)$.

Problem Xc8.1-38. (Laplace's Method)

The exponential matrix $e^{A t}$ can be found from the Laplace resolvent formula for the problem $\Phi^{\prime}=A \Phi, \Phi(0)=I$:

$$
\mathcal{L}(\Phi(t))=(s I-A)^{-1} \Phi(0)=(s I-A)^{-1}
$$

For example, $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ gives $\mathcal{L}\left(e^{A t}\right)=\left(\begin{array}{rr}s-1 & 0 \\ 0 & s-2\end{array}\right)^{-1}=\left(\begin{array}{rr}\frac{1}{s-1} & 0 \\ 0 & \frac{1}{s-2}\end{array}\right)=\left(\begin{array}{rr}\mathcal{L}\left(e^{t}\right) & 0 \\ 0 & \mathcal{L}\left(e^{2 t}\right)\end{array}\right)$, which implies $e^{A t}=\left(\begin{array}{rr}e^{t} & 0 \\ 0 & e^{2 t}\end{array}\right)$.
Compute $\Phi(t)=e^{A t}$ using the resolvent formula for the following cases.
(a) $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
(b) $A=\left(\begin{array}{rr}0 & 1 \\ -1 & -2\end{array}\right)$.
(c) $A=\left(\begin{array}{ll}2 & -5 \\ 4 & -2\end{array}\right)$.

Problem Xc8.2-4. (Variation of Parameters)

Use the variation of parameters formula $\mathbf{u}_{p}(t)=e^{A t} \int e^{-A t} \mathbf{f}(t) d t$ to find a particular solution of the given system. Please use technology to do the indicated integration, following the example below.
(a) $\mathbf{u}^{\prime}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right) \mathbf{u}+\binom{1}{2}$.
(b) $\mathbf{u}^{\prime}=\left(\begin{array}{rr}0 & 1 \\ -1 & -2\end{array}\right) \mathbf{u}+\binom{e^{t}}{1}$.

Example: Solve for $\mathbf{u}_{p}(t): \mathbf{u}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right) \mathbf{u}+\binom{1}{0}$.

```
with(LinearAlgebra):
A:=Matrix([[0,1],[1,0]]);
f:=t->Vector([1,0]);
expAt:=t->MatrixExponential(A,t);
integral:=Map(g->int(g,t), expAt(-t).f(t));
up:=simplify(expAt(t).integral);
```


Problem Xc8.2-19. (Initial Value Problem)

Solve the given initial value problem using a computer algebra system. Follow the example given below.
(a) $\mathbf{u}^{\prime}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right) \mathbf{u}+\binom{1}{2}, \mathbf{u}(0)=\binom{0}{0}$.
(b) $\mathbf{u}^{\prime}=\left(\begin{array}{rr}0 & 1 \\ -1 & -2\end{array}\right) \mathbf{u}+\binom{e^{t}}{1}, \mathbf{u}(0)=\binom{1}{0}$.

Example: Solve for $\mathbf{u}(t): \mathbf{u}^{\prime}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \mathbf{u}+\binom{-1}{0}, \mathbf{u}(0)=\binom{-1}{0}$. The answer is $\mathbf{u}=\binom{-e^{-t}}{e^{-t}-1}$.

```
with(LinearAlgebra):
A:=Matrix([[0,1],[1,0]]);
f:=t->Vector([1,0]);
expAt:=t->MatrixExponential(A,t);
integral:=Map(g->int(g,t=0..t), expAt(-t).f(t));
up:=unapply(expAt(t).integral,t):
u0:=Vector([-1,0]);
uh:=t-> expAt(t).(u0-up(0));
u:=simplify(uh(t)+up(t));
```

End of extra credit problems chapter 8.

