\qquad
\qquad

Math 2250 Extra Credit Problems Chapter 7 S2015

Submitted work. Please submit one stapled package with this sheet on top. Kindly check-mark the problems submitted and label the paper Extra Credit. Label each solved problem with its corresponding problem number, e.g., Xc10.3-20.

Problem Xc7.1-8. (Transform to a first order system)

Use the position-velocity substitution $u_{1}=x(t), u_{2}=x^{\prime}(t), u_{3}=y(t), u_{4}=y^{\prime}(t)$ to transform the system below into vector-matrix form $\mathbf{u}^{\prime}(t)=A \mathbf{u}(t)$. Do not attempt to solve the system.

$$
x^{\prime \prime}-2 x^{\prime}+5 y=0, \quad y^{\prime \prime}+2 y^{\prime}-5 x=0 .
$$

Problem Xc7.1-20a. (Dynamical systems)
Prove this result for system

$$
\begin{align*}
& x^{\prime}=a x+b y \tag{1}\\
& y^{\prime}=c x+d y
\end{align*}
$$

Theorem. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and define $\operatorname{trace}(A)=a+d$. Then $p_{1}=-\operatorname{trace}(A), p_{2}=\operatorname{det}(A)$ are the coefficients in the determinant expansion

$$
\operatorname{det}(A-r I)=r^{2}+p_{1} r+p_{2}
$$

and $x(t)$ and $y(t)$ in equation (??) are both solutions of the differential equation $u^{\prime \prime}+p_{1} u^{\prime}+p_{2} u=0$.

Problem \times C7.1-20b. (Solve dynamical systems)
(a) Apply the previous problem to solve

$$
\begin{aligned}
& x^{\prime}=2 x-y, \\
& y^{\prime}=x+2 y .
\end{aligned}
$$

(b) Use first order methods to solve the system

$$
\begin{aligned}
& x^{\prime}=2 x-y, \\
& y^{\prime}=
\end{aligned}
$$

Problem Xc7.2-12. (General solution answer check)

(a) Verify that $\mathbf{x}_{1}(t)=e^{3 t}\binom{1}{-1}$ and $\mathbf{x}_{2}(t)=e^{2 t}\binom{1}{-2}$ are solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, where

$$
A=\left(\begin{array}{rr}
4 & 1 \\
-2 & 1
\end{array}\right)
$$

(b) Apply the Wronskian test $\operatorname{det}\left(\boldsymbol{\operatorname { a u g }}\left(\mathbf{x}_{1}, \mathbf{x} 2\right)\right) \neq 0$ to verify that the two solutions are independent.
(c) Display the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$.

Extra credit problems chapter 7 continue on the next page.

Problem Xc7.2-14. (Particular solution)

(a) Find the constants c_{1}, c_{2} in the general solution

$$
\mathbf{x}(t)=c_{1} e^{3 t}\binom{1}{-1}+c_{2} e^{5 t}\binom{1}{-3}
$$

satisfying the initial conditions $x_{1}(0)=4, x_{2}(0)=-1$.
(b) Find the matrix A in the equation $\mathbf{x}^{\prime}=A \mathbf{x}$. Use the formula $A P=P D$ and Fourier's model for A, which is given implicitly in (a) above.

Problem Xc7.3-8. (Eigenanalysis method 2×2)
(a) Find $\lambda_{1}, \lambda_{2}, \mathbf{v}_{1}, \mathbf{v}_{2}$ in Fourier's model $A\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}\right)=c_{1} \lambda_{1} \mathbf{v}_{1}+c_{2} \lambda_{2} \mathbf{v}_{2}$ for

$$
A=\left(\begin{array}{rr}
3 & -4 \\
4 & 3
\end{array}\right)
$$

(b) Display the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$.

Problem Xc7.3-20. (Eigenanalysis method 3×3)
(a) Find $\lambda_{1}, \lambda_{2}, \lambda_{3}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ in Fourier's model $A\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}\right)=c_{1} \lambda_{1} \mathbf{v}_{1}+c_{2} \lambda_{2} \mathbf{v}_{2}+c_{3} \lambda_{3} \mathbf{v}_{3}$ for

$$
A=\left(\begin{array}{rrr}
2 & 1 & -1 \\
-4 & -3 & -1 \\
4 & 4 & 2
\end{array}\right)
$$

(b) Display the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$.

Problem Xc7.3-30. (Brine Tanks)

Consider two brine tanks satisfying the equations

$$
x_{1}^{\prime}(t)=-k_{1} x_{1}+k_{2} x_{2}, \quad x_{2}^{\prime}=k_{1} x_{1}-k_{2} x_{2} .
$$

Assume $r=10$ gallons per minute, $k_{1}=r / V_{1}, k_{2}=r / V_{2}, x_{1}(0)=30$ and $x_{2}(0)=0$. Let the tanks have volumes $V_{1}=50$ and $V_{2}=25$ gallons. Solve for $x_{1}(t)$ and $x_{2}(t)$.

Problem Xc7.3-40. (Eigenanalysis method 4×4)

Display (a) Fourier's model and (b) the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ for the 4×4 matrix

$$
A=\left(\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
-21 & -5 & -27 & -9 \\
0 & 0 & 5 & 0 \\
0 & 0 & -16 & -4
\end{array}\right)
$$

End of extra credit problems chapter 7.

