\qquad
\qquad

Math 2250 Extra Credit Problems
 Chapter 1
 S2015

Submitted work. Please submit one stapled package with this sheet on top. Kindly check-mark the problems submitted and label the paper Extra Credit. Label each solved problem with its corresponding problem number, e.g., Xc10.3-20.

Problem Xc1.2-4. (Quadrature)

Solve $y^{\prime}=x^{-2}+x^{-1}, y(1)=2$.

Problem Xc1.2-10. (Quadrature)
Solve $y^{\prime}=x e^{-2 x}+x^{2}, y(0)=2$.

Problem Xc1.3-8. (Picard's theorem)

Find a box with center $x=0, y=0$ to which Picard's theorem applies, verifying also continuity of $f(x, y)$ and $f_{y}(x, y)$ in the box, for the equation

$$
y^{\prime}=x \sqrt{x+y+1}, \quad y(0)=0 .
$$

Problem Xc1.3-14. (Peano's theorem)

Does Peano's theorem apply to establish existence of at least one solution, for the problem below? Please carefully check the hypothesis of the theorem, which is continuity of $f(x, y)$ on a box with center $x=0, y=1$.

$$
y^{\prime}=3(y-1)^{1 / 3}, \quad y(0)=1
$$

Problem Xc1.4-6. (Separable DE)

Solve for equilibrium and non-equilibrium solutions (find the general solution).

$$
y^{\prime}=2 x \sec y
$$

Problem Xc1.4-17. (Separability test)

Use the test to verify that the equation $y^{\prime}=e^{x}+e^{y}$ is not separable.

Problem Xc1.4-18. (Separability test)

Find a factorization $f(x, y)=F(x) G(y)$ for the problem below and then determine all non-equilibrium solutions.

$$
y^{\prime}=x^{2}\left(y^{2}+y\right)+y^{2}+x^{2} y+2 y+x^{2}+1 .
$$

Problem Xc1.4-49. (Newton cooling)

A roast is put into an oven whose temperature is $400^{\circ} \mathrm{F}$. The meat thermometer was initially at $40^{\circ} \mathrm{F}$ and after 30 minutes it rose to $90^{\circ} \mathrm{F}$. The roast is done when the thermometer reaches $340^{\circ} \mathrm{F}$. How long does it take to cook the roast?

Problem Xc1.5-4. (Linear DE)

Solve $y^{\prime}-2 x y=e^{x^{2}}$.

Problem Xc1.5-16. (Linear DE)

Solve $y^{\prime}=(1-y) \cos x, y(\pi)=2$.

Problem Xc1.5-24. (Linear DE)
Solve $\left(x^{2}+4\right) y^{\prime}+3 x y=x, y(0)=1$.
Problem Xc1.5-38. (Brine tank)
Solve the brine tank problem

$$
\begin{aligned}
& x^{\prime}(t)=-4 x(t), \\
& y^{\prime}(t)=4 x(t)-5 y(t) .
\end{aligned}
$$

Problem Xc-Cooling. (Newton cooling)

Consider the linear differential equation $u^{\prime}+k u=k a(t), u(0)=u_{0}$, where $a(t)=1+\sin (\pi(t-3) / 12)$. Solve the equation for $u(t)$ and check your answer using a computer algebra system. Use technology to do the integration.

Problem Xc-SteadyState. (Steady-state periodic solution)
Consider the linear differential equation $u^{\prime}+k u=k a(t), u(0)=u_{0}$, where $a(t)=1+\sin (\pi(t-3) / 12)$. Find the steady-state periodic solution of this equation and check your answer in a computer algebra system.

End of extra credit problems chapter 1.

