\qquad

Math 2250 Extra Credit Problems Chapter 10 S2015

Submitted work. Please submit one stapled package with this sheet on top. Kindly check-mark the problems submitted and label the paper Extra Credit. Label each solved problem with its corresponding problem number, e.g., Xc10.3-20.

Problem Xc10.3-20. (Inverse transform)

Solve for $f(t)$ in the relation $\mathcal{L}(f(t))=\frac{1}{s^{4}-8 s^{2}+16}$. Use partial fractions in the details.

Problem Xc10.3-24. (Inverse transform)

Solve for $f(t)$ in the relation $\mathcal{L}(f(t))=\frac{s}{s^{4}+4 a^{4}}$, showing the details that give the answer $f(t)=\frac{1}{2 a^{2}} \sinh$ at \sin at

Problem Xc10.4-12. (Inverse transform, convolution)

Solve for $f(t))$ in the relation $\mathcal{L}(f(t))=\frac{1}{s\left(s^{2}+4 s+5\right)}$. Instead of the convolution theorem, use partial fractions for the details. If you can see how, then check the answer with the convolution theorem.

Problem Xc10.4-26. (Inverse transform techniques)

Use the s-differentiation theorem in the details of solving for $f(t)$ in the relation $\mathcal{L}(f(t))=\arctan \frac{3}{s+2}$. You will need to apply the theorem $\lim _{s \rightarrow \infty} \mathcal{L}(f(t))=0$.

Problem Xc10.4-40. (Series methods for transforms)

Expand in a series, using Taylor series formulas, the function $f(t)=\frac{\cos 2 \sqrt{t}}{\sqrt{\pi t}}$. Then find $\mathcal{L}(f(t))$ as a series by Laplace transform of each series term, separately. Finally, re-constitute the series in variable s into elementary functions, namely $e^{-1 / s}$ divided by \sqrt{s}.

Problem Xc10.5-6. (Second shifting theorem, Heaviside step)

Find the function $f(t)$ in the relation $\mathcal{L}(f(t))=\frac{s e^{-s}}{s^{2}+\pi^{2}}$.
Problem Xc10.5-14. (Transforms of piecewise functions)
Let $f(t)=\left\{\begin{array}{ll}\cos \pi t & 0 \leq t \leq 2, \\ 0 & t>2 .\end{array}\right.$ Find $\mathcal{L}(f(t))$. Details should expand $f(t)$ as a linear combination of Heaviside step functions.

Problem Xc10.5-26. (Sawtooth wave)
Let $f(t+a)=f(t)$ and $f(t)=t$ on $0 \leq t \leq a$. Then f is a-periodic and has a Laplace transform obtained from the periodic function formula. Show the details in the derivation to obtain the answer $\mathcal{L}(f(t))=\frac{1}{a s^{2}}-\frac{e^{-a s}}{s\left(1-e^{-a s}\right)}$.

Problem Xc10.5-28. (Modified sawtooth wave)

Let $f(t+2 a)=f(t)$ and $f(t)=t$ on $0 \leq t \leq a, f(t)=0$ on $a<t \leq 2 a$. Then f is $2 a$-periodic and has a Laplace transform obtained from the periodic function formula. Derive a formula for $\mathcal{L}(f(t))$. The answer to this problem can be found in Edwards-Penney, section 10.5.

Problem Xc-EPbvp-7.6-8. (Impulsive DE)

Solve by Laplace methods $x^{\prime \prime}+2 x^{\prime}+x=\delta(t)-2 \delta(t-1), x(0)=1, x^{\prime}(0)=1$. Check the answer in maple using dsolve(\{de,ic\},x(t), method=laplace).

Problem Xc-EPbvp-7.6-18. (Switching circuit)

A passive LC-circuit has battery 6 volts and model equation $i^{\prime \prime}+100 i=6 \delta(t)-6 \delta(t-1), i(0)=1, i^{\prime}(0)=1$. The switch is closed at time $t=0$ and opened again at $t=1$. Solve the equation by Laplace methods and report the number of full cycles observed before the steady-state $i=0$ is reached (to two decimal places). Check the answer in maple using dsolve(\{de,ic\},i(t),method=laplace).

