Electrical Circuits

- Voltage drop formulas of Faraday, Ohm, Coulomb.
- Kirchhoff's laws.
- LRC Circuit equation.
- Electrical-Mechanical Analogy.
- Transient and Steady-state Currents.
- Reactance and Impedance.
- Time lag.
- Electrical Resonance.

Voltage Drop Formulas

$$
\begin{array}{ll}
\text { Faraday's Law } & V_{L}=L \frac{d I}{d t} \\
& L=\text { inductance in henries, } \\
\text { Ohm's Law } & I=\text { current in amperes. } \\
& V_{R}=R I \\
\text { Coulomb's Law } & V_{C}=\frac{Q}{C} \\
& Q=\text { resistance in ohms. } \\
& C=\text { capacitance in farads. }
\end{array}
$$

Kirchhoff's Laws

The charge Q and current I are related by the equation

$$
\frac{d Q}{d t}=I
$$

- Loop Law: The algebraic sum of the voltage drops around a closed loop is zero.
- Junction Law: The algebraic sum of the currents at a node is zero.

LRC Circuit Equation in Charge form

The first law of Kirchhoff implies the RLC circuit equation

$$
L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)
$$

where inductor \boldsymbol{L}, resistor \boldsymbol{R} and capacitor \boldsymbol{C} are in a single loop having electromotive force $\boldsymbol{E}(\boldsymbol{t})$.

Figure 1. An LRC Circuit.
The components are a resistor \boldsymbol{R}, inductor \boldsymbol{L}, capacitor \boldsymbol{C} and emf $\boldsymbol{E}(\boldsymbol{t})$. Current $\boldsymbol{I}(\boldsymbol{t})$ is assigned counterclockwise direction, from minus to plus on the emf terminals.

LRC Circuit Equation in Current Form

Differentiation of the charge form of the LRC circuit equation

$$
L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)
$$

gives the current form of the LRC circuit equation

$$
L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=\frac{d E}{d t}
$$

Electrical-Mechanical Analogy

$$
\begin{aligned}
& m x^{\prime \prime}+c x^{\prime}+\boldsymbol{k x}=\boldsymbol{F}(t) \\
& L Q^{\prime \prime}+R Q+C^{-1} Q=E(t)
\end{aligned}
$$

Table 1. Electrical-Mechanical Analogy

	Mechanical System	Electrical System
	Mass \boldsymbol{m}	Inductance \boldsymbol{L}
	Dampening constant \boldsymbol{c}	Resistance \boldsymbol{R}
	Hooke's constant \boldsymbol{k}	Reciprocal capacitance $\mathbf{1} / \boldsymbol{C}$
Position \boldsymbol{x}	Charge \boldsymbol{Q} [or Current $\boldsymbol{I}]$	
	External force \boldsymbol{F}	Electromotive force \boldsymbol{E} [or $\boldsymbol{d} \boldsymbol{E} / \boldsymbol{d} \boldsymbol{t}]$

Transient and Steady-state Currents

The theory of mechanical systems leads to electrical results by applying the electricalmechanical analogy to the LRC circuit equation in current form with $E(t)=E_{0} \sin \omega t$. We assume $\boldsymbol{L}, \boldsymbol{R}$ and \boldsymbol{C} positive.

- The solution I_{h} of the homogeneous equation $L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=0$ is a transient current, satisfying

$$
\lim _{t \rightarrow \infty} I_{h}(t)=0
$$

- The non-homogeneous equation $L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=E_{0} \omega \cos \omega t$ has a unique periodic solution [steady-state current]

$$
I_{\mathrm{SS}}(t)=\frac{E_{0} \cos (\omega t-\alpha)}{\sqrt{R^{2}+S^{2}}}, \quad S \equiv \omega L-\frac{1}{\omega C}, \quad \tan \alpha=\frac{\omega R C}{1-L C \omega^{2}}
$$

It is found by the method of undetermined coefficients.

Reactance and Impedance

Write

$$
I_{\mathrm{SS}}(t)=\frac{E_{0} \cos (\omega t-\alpha)}{\sqrt{R^{2}+S^{2}}}
$$

as

$$
I_{\mathrm{SS}}(t)=\frac{E_{0}}{Z} \cos (\omega t-\alpha)
$$

where

$$
\begin{aligned}
Z & =\sqrt{R^{2}+S^{2}} \text { is called the impedance } \\
S & =\omega L-\frac{1}{\omega C} \text { is called the reactance. }
\end{aligned}
$$

Time Lag

The steady-state current $\boldsymbol{I}_{\mathrm{SS}}(\boldsymbol{t}) \frac{E_{0}}{Z} \cos (\omega t-\alpha)$ can be written as a sine function using trigonometric identity $\cos (x-\pi / 2)=\sin (x)$ with $\alpha=\delta+\pi / 2$:

$$
I_{\mathrm{SS}}(t)=\frac{E_{0}}{Z} \sin (\omega t-\delta), \quad \tan \delta=\frac{L C \omega^{2}-1}{\omega R C}=\frac{S}{R}
$$

Because the input is

$$
E(t)=E_{0} \omega \sin (\omega t)
$$

then the time lag between the input voltage and the steady-state current is

$$
\frac{\delta}{\omega}=\frac{\arctan (S / R)}{\omega} \quad \text { seconds. }
$$

Electrical Resonance

Resonance in an LRC circuit is defined only for sinusoidal inputs $E(t)=E_{0} \sin (\omega t)$. Then the differential equation in current form is

$$
I^{\prime \prime}+\frac{R}{L} I^{\prime}+\frac{1}{L C} I=\frac{E_{0} \omega}{L} \cos (\omega t)
$$

Resonance happens if there is a frequency $\boldsymbol{\omega}$ which maximizes the steady-state solution amplitude $I_{0}=E_{0} / Z, Z=\sqrt{R^{2}+S^{2}}, S=\omega L-\frac{1}{C \omega}$. By calculus, this happens exactly when $\boldsymbol{d} \boldsymbol{Z} / \boldsymbol{d} \boldsymbol{\omega}=\mathbf{0}$, which gives the resonant frequency

$$
\omega=\frac{1}{\sqrt{L C}}
$$

Details: $d I_{0} / d \omega=0$ if and only if $-E_{0} Z^{-2} \frac{d Z}{d \omega}=0$, which is equivalent to $\frac{d Z}{d \omega}=0$. Then $2 S \frac{d S}{d \omega}=0$ and finally $S=0$, because $\frac{d S}{d \omega}>0$. The equation $S=0$ is equivalent to $\omega=1 / \sqrt{L C}$.

